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Experiments come in many flavors...
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UI / UX experiments

Kohavi et al. (2012) 2



Ridesharing dispatch

doordash.engineering/2018/02/13/

switchback-tests-and-randomized-experimentation-under-network-effects-at-doordash/ 3
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Pricing experiments

From keepa.com 4



Ranking experiments

netflixtechblog.com/interleaving-in-online-experiments-at-netflix-a04ee392ec55
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Ads blindness

Hohnhold et al. (2015)
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1. A brief tour
• Hash randomization and ramping
• Novelty effects, long-term effects, surrogates
• Variance reduction
• Interference
• Sequential testing
• ...

2. Augmented inverse propensity weighting: a really useful technique
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Part I: a brief tour through some aspects of
experimentation in tech

7



Hash randomization and ramping
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Hash randomization

• Deterministic map from ID to [0, 1]
• Allows consistent ramping
• No need to store assignments

engineering.linkedin.com/blog/2020/a-b-testing-variant-assignment
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Ramping / staggered entry

• Week 1: 5% canary
• Weeks 2-3: 50% for max power
• Weeks 4-7: 95% holdout

(Just an example)
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Regression detection

Catch regressions as early as possible

Lindon et al. (2022)
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Novelty effects, long-term effects, surrogates
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Novelty effects

• Users react to changes
• Or, power users enroll sooner
• Major source of false positives

Sadeghi et al. (2021)
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Learning effects

• Can take months to see long-term
effects

• Can be hard to estimate

Hohnhold et al. (2015)
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Surrogates: overview

• Surrogates are a popular approach to estimate long-term effects
• Basic idea

• Regress long-term “true north” metric on short-term “surrogate” metrics
• Use the resulting combination of surrogate metrics as an experiment outcome
metric

• Example from Athey et al. (2019):
• Treatment: job training program in California in the 1980s
• Long-term metric: employment rate over nine years
• Surrogate metrics: employment over each of first six quarters
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Surrogates: example data

Athey et al. (2019) 14



Surrogate estimation

Athey et al. (2019) 15



Variance reduction
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Covariate adjustment for variance reduction

booking.ai/

how-booking-com-increases-the-power-of-online-experiments-with-cuped-995d186fff1d
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Interleaving for ranking experiments

• Increase sample size
• Avoid chance imbalance from
“power users”

• Main challenge is position bias

netflixtechblog.com/interleaving-in-online-experiments-at-netflix-a04ee392ec55
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Interference
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Interference

• Ideal experiment:
1. (A) Treat everyone
2. (B) Go back in time and treat no one
3. (C) Compare

• Randomization ensures treated and control groups resemble the full
population

• SUTVA ensures treated and control group outcomes are representative of the
above counterfactuals (A) and (B)

• Interference: treatment for one unit affects outcome for another (violation of
SUTVA)

• Outcomes in treated (control) group may not be representative of outcomes
if we were to treat everyone (no one)
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Examples of interference

• Social network sharing
• Ridesharing marketplaces
• Product marketplaces
• Ad auctions
• Producer-side ranker experiments
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Coarse randomization

eng.lyft.com/experimentation-in-a-ridesharing-marketplace-b39db027a66e
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Switchback design

www.amazon.science/blog/the-science-of-price-experiments-in-the-amazon-store
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Multiple randomization

• Randomize individual interactions
• Can choose design to target specific
spillovers

• In this example:
• Blue - Red = spillover effect within
sellers

• Green - Red = spillover effect
within buyers

• Black - Red = informative about
total effect

Bajari et al. (2021)
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Graph clustering

• Assume interference is
limited by a known graph

• Use isolated clusters as
randomization units

• There are many varieties;
illustration shows “ego
clustering”

Saint-Jacques et al. (2019)
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Budget split

Avoids interference due to scarce resources, e.g., in ad marketplaces

engineering.linkedin.com/blog/2021/budget-split-testing
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Sequential testing
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Sequential monitoring of experiment results is problematic.

An old screenshot from optimizely.com
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One path of p-values from a fair coin
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Let’s look at many such paths... 26



With no bias, we only rarely conclude the coin is biased.
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Just one out of 25 p-values is below 0.05. 27



Continuous monitoring of fixed-sample p-values inflates the false positive rate.
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Here, with a fair coin, eight out of 25 paths reach significance. 28



The false positive rate grows arbitrarily large with enough flips.
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Solutions for sequential monitoring

Solution is basically to make p-value larger / confidence intervals wider.

Two main appraoches:

• Confidence sequences / always-valid inference: allow peeking as frequently
as desired (more flexible)

• Group sequential tests: allow peeking on a predetermined schedule (e.g.,
once a week) (more powerful)

30
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So many more topics...

• Relative lift and ratio metrics
• Quantile treatment effects
• Heterogeneous treatment effects
• Offline evaluation and policy optimization
• Multiple testing
• Sequential allocation and optimization
• A/A tests and sample ratio mismatch
• Data engineering
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Questions?
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Part II: the Zen of Augmented Inverse Propensity Weighting
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Some common analyses of randomized experiments

• Estimate average treatment effect / absolute lift
• Estimate relative lift
• Estimate a model for heterogeneous treatment effects
• Estimate the value of a personalized policy (and perhaps optimize such a
policy)

• Estimate quantile treatment effects

We want to do all these things efficiently, making use of covariates to reducing
variance.

Augmented inverse propensity weighting (AIPW) provides a unified approach to
solving all of these.
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Setup: two-armed experiment with potential outcomes

• We run an experiment with two arms, treatment and control.
• Each units (e.g., user) is represented by a quadruple (Xi,Wi, Yi(0), Yi(1))

• Xi: covariates measured before treatment (e.g., pre-experiment weekly sessions)
• Wi ∈ 0, 1: treatment indicator (e.g., send new notifications)
• Yi(0), Yi(1): potential outcomes under control and treatment, respectively (e.g.,
weekly sessions if assigned to control or treatment)

• We observe either Yi(0) or Yi(1), not both: our observed sample consists of
(Xi,Wi, Yi(Wi))

• We make the usual SUTVA / no-interference assumption.

• We assign Wi by i.i.d. coin flips with P(Wi = 1) = p.

34



Example potential outcomes table

Full table (unobserved):
Xi Wi Yi(0) Yi(1)

Unit 1 6 1 5 8
Unit 2 2 0 2 0
Unit 3 3 1 4 4

...
...

...
...

...

Observed table:
Xi Wi Yi(0) Yi(1)

Unit 1 6 1 ? 8
Unit 2 2 0 2 ?
Unit 3 3 1 ? 4

...
...

...
...

...
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The estimands and some (inefficient) estimators

Estimand Definition Naive estimator

ATE / Absolute lift E [Y(1)− Y(0)] En [Yi | Wi = 1]− En [Yi | Wi = 0]

Relative lift E[Y(1)]
E[Y(0)]

En[Yi |Wi=1]
En[Yi |Wi=0]

Policy value V(π) = E [Y(π(X))] V̂(π) = En
[ 1Wi=π(Xi)Yi
P(Wi=π(Xi))

]
CATE(x) E [Y(1)− Y(0) | X = x] Yi(1) ∼ µ1(Xi) | Wi = 1

Yi(0) ∼ µ0(Xi) | Wi = 0
ĈATE(x) = µ̂1(x)− µ̂0(x)
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The AIPW “imputation principle”

1. Regress Yi(1) on Xi among units with Wi = 1 to get µ̂1(x).
2. Regress Yi(0) on Xi among units with Wi = 0 to get µ̂0(x).
3. For each unit i compute “pseudo-outcomes”

Γi(0) = µ̂0(Xi) +
1−Wi
1− p (Yi − µ̂0(Xi))

Γi(1) = µ̂1(Xi) +
Wi
p (Yi − µ̂1(Xi))

(In practice, need to use cross-fitting. Also a good idea to use empirical
propensity.)

Then treat Γi(0), Γi(1) as if they were observed potential outcomes.
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Why does this make sense?

Suppose only Wi is random (not Xi, Yi(0), Yi(1)), and treat µ̂0, µ̂1 as fixed. Then

EΓi(1) = E
[
µ̂1(Xi) +

Wi
p (Yi − µ̂1(Xi))

]
(1)

= µ̂1(Xi) + E
[
Wi
p (Yi(1)− µ̂1(Xi))

]
(2)

= µ̂1(Xi) +
EWi
p (Yi(1)− µ̂1(Xi)) (3)

= Yi(1). (4)

Meanwhile,

Var Γi(1) =
1− p
p (Yi(1)− µ̂1(Xi))2. (5)
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Imputed potential outcomes table

Full table (unobserved):
Xi Wi Yi(0) Yi(1)

Unit 1 6 1 5 8
Unit 2 2 0 2 0
Unit 3 3 1 4 4

...
...

...
...

...

Imputed table:
Xi Wi Γi(0) Γi(1)

Unit 1 6 1 6 10
Unit 2 2 0 2 2
Unit 3 3 1 3 5

...
...

...
...

...
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Efficient AIPW estimators

Estimand Definition AIPW estimator

ATE / Absolute lift E [Y(1)− Y(0)] En [Γi(1)− Γi(0)]

Relative lift E[Y(1)]
E[Y(0)]

En[Γi(1)]
En[Γi(0)]

Policy value V(π) = E [Y(π(X))] V̂(π) = En [Γi(π(Xi))]

CATE(x) E [Y(1)− Y(0) | X = x] Regress Γi(1)− Γi(0) on Xi
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Attractive properties of AIPW

• Unbiased / consistent no matter what outcome model you use

• Lowest possible variance if the outcome model is good
• Can estimate variance ignoring randomness of the outcome model. For
example:

ÂTE =
1
n

n∑
i=1

[Γi(1)− Γi(0)]

V̂ar(ÂTE) = 1
n2

n∑
i=1

[
Γi(1)− Γi(0)− ÂTE

]2
.

(The story is more complicated for CATE estimation.)

Generalizes to non-constant propensity score: replace p with
e(x) = P (Wi = 1 | Xi = x).
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AIPW for policy optimization

Recall AIPW estimate of the value of a personalized policy π:

V̂(π) = En [Γi(π(Xi))] .

Can treat this as an “empirical welfare” objective and optimize over π.

Reduces to cost-sensitive multiclass classification.

In the binary treatment case, this is weighted binary classification:

Label: 1Γi(1)>Γi(0)

Weight: |Γi(1)− Γi(0)|
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Further reading on AIPW

• Robins et al. (1994) is generally cited as the origin of AIPW
• Chernozhukov et al. (2016) did a lot to popularize the use of cross-fitting
together with AIPW-style estimators

• Jin and Ba (2021) focus on the variance reduction in randomized experiments,
”ratio metrics” such as click-through rates

• Dudik et al. (2011) is a great source on policy evaluation with AIPW
• Kennedy (2023) analyzes the ”DR-learner” for CATE estimation
• Angelopoulos et al. (2023) discusses variance reduction for M-estimators

43



Angelopoulos, Anastasios N., Stephen Bates, Clara Fannjiang, Michael I. Jordan, and Tijana Zrnic (2023).
Prediction-Powered Inference. URL: http://arxiv.org/abs/2301.09633. preprint.
Athey, Susan, Raj Chetty, Guido W. Imbens, and Hyunseung Kang (2019). The Surrogate Index: Combining
Short-Term Proxies to Estimate Long-Term Treatment Effects More Rapidly and Precisely. URL:
https://www.nber.org/papers/w26463. preprint.
Bajari, Patrick, Brian Burdick, Guido W. Imbens, Lorenzo Masoero, James McQueen, Thomas Richardson, and
Ido M. Rosen (2021). Multiple Randomization Designs. URL: http://arxiv.org/abs/2112.13495.
preprint.
Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and
James Robins (2016). “Double/Debiased Machine Learning for Treatment and Causal Parameters”.
Dudik, Miroslav, John Langford, and Lihong Li (2011). Doubly Robust Policy Evaluation and Learning. URL:
http://arxiv.org/abs/1103.4601. preprint.
Hohnhold, Henning, Deirdre O’Brien, and Diane Tang (2015). “Focusing on the Long-term: It’s Good for Users
and Business”. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD ’15. The 21th ACM SIGKDD International Conference. Sydney, NSW, Australia: ACM
Press, pp. 1849–1858.
Jin, Ying and Shan Ba (2021). “Towards Optimal Variance Reduction in Online Controlled Experiments”.

44

http://arxiv.org/abs/2301.09633
https://www.nber.org/papers/w26463
http://arxiv.org/abs/2112.13495
http://arxiv.org/abs/1103.4601


Kennedy, Edward H. (2023). Towards Optimal Doubly Robust Estimation of Heterogeneous Causal Effects.
URL: http://arxiv.org/abs/2004.14497. preprint.
Kohavi, Ron, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, and Ya Xu (2012). “Trustworthy Online
Controlled Experiments: Five Puzzling Outcomes Explained”. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, pp. 786–794.
Lindon, Michael, Chris Sanden, and Vaché Shirikian (2022). “Rapid Regression Detection in Software
Deployments through Sequential Testing”.
Robins, James M., Andrea Rotnitzky, and Lue Ping Zhao (1994). “Estimation of Regression Coefficients When
Some Regressors Are Not Always Observed”. Journal of the American Statistical Association 89 (427),
pp. 846–866.
Sadeghi, Soheil, Somit Gupta, Stefan Gramatovici, Jiannan Lu, Hao Ai, and Ruhan Zhang (2021). Novelty and
Primacy: A Long-Term Estimator for Online Experiments. URL: http://arxiv.org/abs/2102.12893.
preprint.
Saint-Jacques, Guillaume, Maneesh Varshney, Jeremy Simpson, and Ya Xu (2019). Using Ego-Clusters to
Measure Network Effects at LinkedIn. URL: http://arxiv.org/abs/1903.08755. preprint.

45

http://arxiv.org/abs/2004.14497
http://arxiv.org/abs/2102.12893
http://arxiv.org/abs/1903.08755


Questions?

steve@stevehoward.org
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Bonus: quantiles

Suppose we want to estimate the π-quantile of treatment outcomes Y(1).

This is defined by the population estimating equation

θ⋆ = solve
θ

E
[
1Y(1)≤θ − π

]
,

and ordinarily our (M-)estimator would be the sample quantile

θ̂ = solve
θ

1
n

n∑
i=1

1Yi(1)≤θ − π,

but Yi(1) is missing for units with Ai = 0. So apply AIPW to the estimating
equation itself:

θ̂AIPW = solve
θ

1
n

n∑
i=1

[
1µ̂1(Xi)≤θ +

Ai
p
(
1Yi(1)≤θ − 1µ̂1(Xi)≤θ

)]
.
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