Augmented inverse propensity weighting for randomized experiments

Steve Howard The Voleon Group March 14, 2023

Some common analyses of randomized experiments

- Estimate average treatment effect / absolute lift
- Estimate relative lift
- Estimate quantile treatment effects
- Estimate a model for heterogeneous treatment effects
- Estimate the value of a personalized policy (and perhaps optimize such a policy)

We want to do all these things *efficiently*, making use of covariates to reducing variance.

Some common analyses of randomized experiments

- Estimate average treatment effect / absolute lift
- Estimate relative lift
- Estimate quantile treatment effects
- Estimate a model for heterogeneous treatment effects
- Estimate the value of a personalized policy (and perhaps optimize such a policy)

We want to do all these things *efficiently*, making use of covariates to reducing variance.

Augmented inverse propensity weighting (AIPW) provides a unified approach to solving all of these.

Setup: two-armed experiment with potential outcomes

- We run an experiment with two arms, treatment and control.
- We sample i.i.d. from a population of units (X, W, Y(0), Y(1)) (e.g., users)
 - X: covariates measured before treatment (e.g., pre-experiment weekly sessions)
 - $W \in 0, 1$: treatment indicator (e.g., send new notifications)
 - Y(0), Y(1): potential outcomes under control and treatment, respectively (e.g., weekly sessions if assigned to control or treatment)
- We observe either Y(0) or Y(1), not both: our *observed* sample consists of (X_i, W_i, Y_i(W_i))
 - $\cdot\,$ We make the usual SUTVA / no-interference assumption.
- We assign W_i by i.i.d. coin flips with $P(W_i = 1) = p$.

Full table (unobserved):				
	X _i	Wi	$Y_{i}(0)$	$Y_{i}(1)$
Unit 1	6	1	5	8
Unit 2	2	0	2	0
Unit 3	3	1	4	4
÷	÷	÷	:	:

Observed table:				
	X _i	W_i	$Y_{i}(0)$	$Y_{i}(1)$
Unit 1	6	1	?	8
Unit 2	2	0	2	?
Unit 3	3	1	?	4
÷	÷	÷	÷	:

Estimand	Definition	Naive estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_{n}[Y_{i}(1) \mid W_{i} = 1] - \mathbb{E}_{n}[Y_{i}(0) \mid W_{i} = 0]$

Estimand	Definition	Naive estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_{n}[Y_{i}(1) \mid W_{i} = 1] - \mathbb{E}_{n}[Y_{i}(0) \mid W_{i} = 0]$
Relative lift	$\frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]}$	$\frac{\mathbb{E}_n[Y_i(1) \mid W_i=1]}{\mathbb{E}_n[Y_i(0) \mid W_i=0]}$

Estimand	Definition	Naive estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_{n}[Y_{i}(1) \mid W_{i} = 1] - \mathbb{E}_{n}[Y_{i}(0) \mid W_{i} = 0]$
Relative lift	$\frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]}$	$\frac{\mathbb{E}_n[Y_i(1) \mid W_i=1]}{\mathbb{E}_n[Y_i(0) \mid W_i=0]}$
Policy value	$V(\pi) = \mathbb{E}\left[Y(\pi(X)) ight]$	$\widehat{V}(\pi) = \mathbb{E}_n \left[rac{1_{A_i = \pi(X_i)} Y_i(\pi(X_i))}{\mathbb{P}(A_i = \pi(X_i))} ight]$

Estimand	Definition	Naive estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_n[Y_i(1) \mid W_i = 1] - \mathbb{E}_n[Y_i(0) \mid W_i = 0]$
Relative lift	$\frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]}$	$\frac{\mathbb{E}_n[Y_i(1) \mid W_i=1]}{\mathbb{E}_n[Y_i(0) \mid W_i=0]}$
Policy value	$V(\pi) = \mathbb{E}\left[Y(\pi(X))\right]$	$\widehat{V}(\pi) = \mathbb{E}_n \left[rac{1_{A_i = \pi(X_i)} Y_i(\pi(X_i))}{\mathbb{P}(A_i = \pi(X_i))} ight]$
CATE(x)	$\mathbb{E}\left[Y(1)-Y(0) \mid X=x\right]$	$Y_i(1) \sim \mu_1(X_i) \mid W_i = 1$
		$Y_i(0) \sim \mu_0(X_i) \mid W_i = 0$
		$\widehat{CATE}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$

The AIPW "imputation principle"

- 1. Regress $Y_i(1)$ on X_i among units with $W_i = 1$ to get $\hat{\mu}_1(x)$.
- 2. Regress $Y_i(0)$ on X_i among units with $W_i = 0$ to get $\hat{\mu}_0(x)$.
- 3. For each unit *i* compute "pseudo-outcomes"

$$\Gamma_i(0) = \hat{\mu}_0(X_i) + \frac{1 - W_i}{1 - p} (Y_i(0) - \hat{\mu}_0(0))$$

$$\Gamma_i(1) = \hat{\mu}_1(X_i) + \frac{W_i}{p} (Y_i(1) - \hat{\mu}_1(X_i))$$

(In practice, need to use cross-fitting. Also a good idea to use empirical propensity.)

The AIPW "imputation principle"

- 1. Regress $Y_i(1)$ on X_i among units with $W_i = 1$ to get $\hat{\mu}_1(x)$.
- 2. Regress $Y_i(0)$ on X_i among units with $W_i = 0$ to get $\hat{\mu}_0(x)$.
- 3. For each unit *i* compute "pseudo-outcomes"

$$\Gamma_i(0) = \hat{\mu}_0(X_i) + \frac{1 - W_i}{1 - p} (Y_i(0) - \hat{\mu}_0(0))$$

$$\Gamma_i(1) = \hat{\mu}_1(X_i) + \frac{W_i}{p} (Y_i(1) - \hat{\mu}_1(X_i))$$

(In practice, need to use cross-fitting. Also a good idea to use empirical propensity.)

Then treat $\Gamma_i(0)$, $\Gamma_i(1)$ as if they were observed potential outcomes.

Ful	Full table (unobserved):				
		X _i	Wi	$Y_{i}(0)$	$Y_{i}(1)$
Unit 1	L	6	1	5	8
Unit 2	2	2	0	2	0
Unit 3	3	3	1	4	4
	:		÷	:	÷

Imputed table:				
	$X_i W_i \Gamma_i(0) \Gamma_i(1)$			
Unit 1	6	1	6	10
Unit 2	2	0	2	2
Unit 3	3	1	3	5
:	÷	÷	:	:

Estimand	Definition	AIPW estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_n\left[\Gamma_i(1)-\Gamma_i(0)\right]$

Estimand	Definition	AIPW estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_n\left[\Gamma_i(1)-\Gamma_i(0)\right]$
Relative lift	$\frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]}$	$\frac{\mathbb{E}_n[\Gamma_i(1)]}{\mathbb{E}_n[\Gamma_i(0)]}$

Estimand	Definition	AIPW estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_n\left[\Gamma_i(1)-\Gamma_i(0)\right]$
Relative lift	$\frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]}$	$\frac{\mathbb{E}_n[\Gamma_i(1)]}{\mathbb{E}_n[\Gamma_i(0)]}$
Policy value	$V(\pi) = \mathbb{E}\left[Y(\pi(X))\right]$	$\widehat{V}(\pi) = \mathbb{E}_n \left[\Gamma_i(\pi(X_i)) \right]$

Estimand	Definition	AIPW estimator
ATE / Absolute lift	$\mathbb{E}\left[Y(1)-Y(0) ight]$	$\mathbb{E}_n\left[\Gamma_i(1)-\Gamma_i(0)\right]$
Relative lift	$\frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]}$	$\frac{\mathbb{E}_n[\Gamma_i(1)]}{\mathbb{E}_n[\Gamma_i(0)]}$
Policy value	$V(\pi) = \mathbb{E}\left[Y(\pi(X))\right]$	$\widehat{V}(\pi) = \mathbb{E}_n \left[\Gamma_i(\pi(X_i)) \right]$
CATE(x)	$\mathbb{E}\left[Y(1)-Y(0) \mid X=x\right]$	Regress $\Gamma_i(1) - \Gamma_i(0)$ on X_i

• Unbiased no matter what outcome model you use

- Unbiased no matter what outcome model you use
- Lowest possible variance if the outcome model is good

- Unbiased no matter what outcome model you use
- Lowest possible variance if the outcome model is good
- Can estimate variance ignoring randomness of the outcome model. For example:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} [\Gamma_i(1) - \Gamma_i(0)]$$
$$\widehat{Var}(\widehat{ATE}) = \frac{1}{n^2} \sum_{i=1}^{n} [\Gamma_i(1) - \Gamma_i(0) - \widehat{ATE}]^2$$

(The story is more complicated for CATE estimation.)

- \cdot Unbiased no matter what outcome model you use
- Lowest possible variance if the outcome model is good
- Can estimate variance ignoring randomness of the outcome model. For example:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \left[\Gamma_i(1) - \Gamma_i(0) \right]$$
$$\widehat{Var}(\widehat{ATE}) = \frac{1}{n^2} \sum_{i=1}^{n} \left[\Gamma_i(1) - \Gamma_i(0) - \widehat{ATE} \right]^2$$

(The story is more complicated for CATE estimation.)

Generalizes to non-constant propensity score: replace p with $e(x) = P(W_i = 1 | X_i = x)$.

Recall AIPW estimate of the value of a personalized policy π :

$$\widehat{V}(\pi) = \mathbb{E}_n \left[\Gamma_i(\pi(X_i)) \right].$$

Can treat this as an "empirical welfare" objective and optimize over π .

Reduces to cost-sensitive multiclass classification.

In the binary treatment case, this is weighted binary classification:

Label: $1_{\Gamma_i(1) > \Gamma_i(0)}$ Weight: $|\Gamma_i(1) - \Gamma_i(0)|$ Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J (2018). Double/Debiased Machine Learning for Treatment and Structural Parameters. The Econometrics Journal 21(1), C1–C68.

Jin, Y., & Ba, S. (2022). Toward Optimal Variance Reduction in Online Controlled Experiments. Technometrics, 1-12.

Dudík, M., Langford, J., & Li, L. (2011). Doubly robust policy evaluation and learning. arXiv preprint arXiv:1103.4601.

Kennedy, E. H. (2020). Towards optimal doubly robust estimation of heterogeneous causal effects. arXiv preprint arXiv:2004.14497.

Angelopoulos, A. N., Bates, S., Fannjiang, C., Jordan, M. I., & Zrnic, T. (2023). Prediction-Powered Inference. arXiv preprint arXiv:2301.09633.

Questions?

steve@stevehoward.org

More details in the blog post at **stevehoward.org**

Suppose we want to estimate the π -quantile of treatment outcomes Y(1).

Suppose we want to estimate the π -quantile of treatment outcomes Y(1). This is defined by the population estimating equation

$$\theta^{\star} = \operatorname{solve}_{\theta} \mathbb{E} \left[\mathbb{1}_{\mathsf{Y}(1) \leq \theta} - \pi \right],$$

and ordinarily our (M-)estimator would be the sample quantile

$$\hat{\theta} = \operatorname{solve}_{\theta} \frac{1}{n} \sum_{i=1}^{n} 1_{Y_i(1) \leq \theta} - \pi,$$

but $Y_i(1)$ is missing for units with $A_i = 0$. So apply AIPW to the estimating equation itself:

$$\hat{\theta}_{\text{AIPW}} = \underset{\theta}{\text{solve}} \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{1}_{\hat{\mu}_{1}(X_{i}) \leq \theta} + \frac{A_{i}}{p} \left(\mathbb{1}_{Y_{i}(1) \leq \theta} - \mathbb{1}_{\hat{\mu}_{1}(X_{i}) \leq \theta} \right) \right].$$