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Some common analyses of randomized experiments

• Estimate average treatment effect / absolute lift
• Estimate relative lift
• Estimate quantile treatment effects
• Estimate a model for heterogeneous treatment effects
• Estimate the value of a personalized policy (and perhaps optimize such a
policy)

We want to do all these things efficiently, making use of covariates to reducing
variance.

Augmented inverse propensity weighting (AIPW) provides a unified approach to
solving all of these.
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Setup: two-armed experiment with potential outcomes

• We run an experiment with two arms, treatment and control.
• We sample i.i.d. from a population of units (X,W, Y(0), Y(1)) (e.g., users)

• X: covariates measured before treatment (e.g., pre-experiment weekly sessions)
• W ∈ 0, 1: treatment indicator (e.g., send new notifications)
• Y(0), Y(1): potential outcomes under control and treatment, respectively (e.g.,
weekly sessions if assigned to control or treatment)

• We observe either Y(0) or Y(1), not both: our observed sample consists of
(Xi,Wi, Yi(Wi))

• We make the usual SUTVA / no-interference assumption.

• We assign Wi by i.i.d. coin flips with P(Wi = 1) = p.
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Example potential outcomes table

Full table (unobserved):
Xi Wi Yi(0) Yi(1)

Unit 1 6 1 5 8
Unit 2 2 0 2 0
Unit 3 3 1 4 4

...
...

...
...

...

Observed table:
Xi Wi Yi(0) Yi(1)

Unit 1 6 1 ? 8
Unit 2 2 0 2 ?
Unit 3 3 1 ? 4

...
...

...
...

...
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The estimands and some (inefficient) estimators

Estimand Definition Naive estimator

ATE / Absolute lift E [Y(1)− Y(0)] En [Yi(1) | Wi = 1]− En [Yi(0) | Wi = 0]

Relative lift E[Y(1)]
E[Y(0)]

En[Yi(1) |Wi=1]
En[Yi(0) |Wi=0]

Policy value V(π) = E [Y(π(X))] V̂(π) = En
[ 1Ai=π(Xi)Yi(π(Xi))

P(Ai=π(Xi))

]
CATE(x) E [Y(1)− Y(0) | X = x] Yi(1) ∼ µ1(Xi) | Wi = 1

Yi(0) ∼ µ0(Xi) | Wi = 0
ĈATE(x) = µ̂1(x)− µ̂0(x)
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The AIPW “imputation principle”

1. Regress Yi(1) on Xi among units with Wi = 1 to get µ̂1(x).
2. Regress Yi(0) on Xi among units with Wi = 0 to get µ̂0(x).
3. For each unit i compute “pseudo-outcomes”

Γi(0) = µ̂0(Xi) +
1−Wi
1− p (Yi(0)− µ̂0(0))

Γi(1) = µ̂1(Xi) +
Wi
p (Yi(1)− µ̂1(Xi))

(In practice, need to use cross-fitting. Also a good idea to use empirical
propensity.)

Then treat Γi(0), Γi(1) as if they were observed potential outcomes.
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Imputed potential outcomes table

Full table (unobserved):
Xi Wi Yi(0) Yi(1)

Unit 1 6 1 5 8
Unit 2 2 0 2 0
Unit 3 3 1 4 4

...
...

...
...

...

Imputed table:
Xi Wi Γi(0) Γi(1)

Unit 1 6 1 6 10
Unit 2 2 0 2 2
Unit 3 3 1 3 5

...
...

...
...

...
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Efficient AIPW estimators

Estimand Definition AIPW estimator

ATE / Absolute lift E [Y(1)− Y(0)] En [Γi(1)− Γi(0)]

Relative lift E[Y(1)]
E[Y(0)]

En[Γi(1)]
En[Γi(0)]

Policy value V(π) = E [Y(π(X))] V̂(π) = En [Γi(π(Xi))]

CATE(x) E [Y(1)− Y(0) | X = x] Regress Γi(1)− Γi(0) on Xi
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Attractive properties of AIPW

• Unbiased no matter what outcome model you use

• Lowest possible variance if the outcome model is good
• Can estimate variance ignoring randomness of the outcome model. For
example:

ÂTE =
1
n

n∑
i=1

[Γi(1)− Γi(0)]

V̂ar(ÂTE) = 1
n2

n∑
i=1

[
Γi(1)− Γi(0)− ÂTE

]2
.

(The story is more complicated for CATE estimation.)

Generalizes to non-constant propensity score: replace p with
e(x) = P (Wi = 1 | Xi = x).
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AIPW for policy optimization

Recall AIPW estimate of the value of a personalized policy π:

V̂(π) = En [Γi(π(Xi))] .

Can treat this as an “empirical welfare” objective and optimize over π.

Reduces to cost-sensitive multiclass classification.

In the binary treatment case, this is weighted binary classification:

Label: 1Γi(1)>Γi(0)

Weight: |Γi(1)− Γi(0)|
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Questions?

steve@stevehoward.org
More details in the blog post at stevehoward.org
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Bonus: quantiles

Suppose we want to estimate the π-quantile of treatment outcomes Y(1).

This is defined by the population estimating equation

θ⋆ = solve
θ

E
[
1Y(1)≤θ − π

]
,

and ordinarily our (M-)estimator would be the sample quantile

θ̂ = solve
θ

1
n

n∑
i=1

1Yi(1)≤θ − π,

but Yi(1) is missing for units with Ai = 0. So apply AIPW to the estimating
equation itself:

θ̂AIPW = solve
θ

1
n

n∑
i=1

[
1µ̂1(Xi)≤θ +

Ai
p
(
1Yi(1)≤θ − 1µ̂1(Xi)≤θ

)]
.
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