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Sequential monitoring of experiment results is problematic.
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One path of p-values from a fair coin
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Let’s look at many such paths... 3



With no bias, we only rarely conclude the coin is biased.
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Just one out of 25 p-values is below 0.05. 4



Continuous monitoring of fixed-sample p-values inflates the false positive rate.
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Here, with a fair coin, eight out of 25 paths reach significance. 5



The false positive rate grows arbitrarily large with enough flips.
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Confidence sequences solve the problem of continuous monitoring.

A confidence sequence for (θt)∞t=1 is a sequence of intervals (CIt)∞t=1 satisfying

P(θt ∈ CIt for all t ∈ N) ≥ 1− α.

[Darling and Robbins 1967, Lai 1984, Jennison and Turnbull 1989, Johari et al. 2015, H. et al. 2021]

Much stronger than the fixed-sample guarantee:

For all t ∈ N,P(θt ∈ CIt) ≥ 1− α.

In short, we achieve this by making confidence intervals wider.
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Empirical mean
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Outline

Some key results

Frequently asked questions

Confidence sequence for regression coefficients
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Some key results
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Empirical-Bernstein confidence sequence for bounded random variables

Theorem (H., Ramdas, McAuliffe, Sekhon 2021)

Suppose Xi are independent and [a,b]-valued for all i. Let X̂i be any predictable
sequence and uα be any sub-exponential uniform boundary with scale b− a.
Then

P

∣∣X̄t − EX̄t
∣∣ < uα

(∑t
i=1(Xi − X̂i)2

)
t for all t ∈ N

 ≥ 1− 2α.

10



Empirical-Bernstein confidence sequence for bounded random variables

Theorem (H., Ramdas, McAuliffe, Sekhon 2021)

Suppose Xi are independent and [a,b]-valued for all i. Let X̂i be any predictable
sequence and uα be any sub-exponential uniform boundary with scale b− a.
Then

P

∣∣X̄t − EX̄t
∣∣ < uα

(∑t
i=1(Xi − X̂i)2

)
t for all t ∈ N

 ≥ 1− 2α.

10



Empirical-Bernstein confidence sequence for bounded random variables

Theorem (H., Ramdas, McAuliffe, Sekhon 2021)

Suppose Xi are independent and [a,b]-valued for all i. Let X̂i be any predictable
sequence and uα be any sub-exponential uniform boundary with scale b− a.
Then

P

∣∣X̄t − EX̄t
∣∣ < uα

(∑t
i=1(Xi − X̂i)2

)
t for all t ∈ N

 ≥ 1− 2α.

10



Empirical-Bernstein confidence sequence for bounded random variables

Theorem (H., Ramdas, McAuliffe, Sekhon 2021)

Suppose Xi are independent and [a,b]-valued for all i. Let X̂i be any predictable
sequence and uα be any sub-exponential uniform boundary with scale b− a.
Then

P

∣∣X̄t − EX̄t
∣∣ < uα

(∑t
i=1(Xi − X̂i)2

)
t for all t ∈ N

 ≥ 1− 2α.

Here uα(v) is O(
√
v log v) or O(

√
v log log v).
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What about that boundedness assumption?

Without some similar assumption, it is impossible to construct a confidence
interval.

The problem: one outlier can have arbitrarily large influence, e.g.

Xi =

0, with probability 1− ϵ,

1/ϵ, with probability ϵ.
(1)

Expectation is always one, but you need ∼ 1/ϵ observations to have any idea
about this.

Asymptotic arguments often sweep this issue under the rug. (In practice, though,
they’re usually satisfactory.)
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Choosing a uniform boundary in practice

Some advice for choosing the uniform boundary function uα(·):

• Two-sided normal mixture is a nice starting point.
• Simple closed form: eq. (14) of https://arxiv.org/pdf/1810.08240.pdf
• Asymptotic justification: Waudby-Smith et al. (2021) “Time-uniform central limit
theory with applications to anytime-valid causal inference”

• For choosing the tuning parameter ρ:
• Sec. 3.5 of https://arxiv.org/pdf/1810.08240.pdf
• Sec. 5 of https://arxiv.org/pdf/1906.09712.pdf

• For non-asymptotic guarantees, need to go deeper
• State-of-the-art for bounded random variables: Waudby-Smith & Ramdas
(2022) “Estimating means of bounded random variables by betting”
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Average treatment effect: setup

Unit i has fixed potential outcomes Yi(0), Yi(1), for i = 1, 2, . . .

We assign unit i randomly to treatment with probability p or control with
probability 1− p, and observe Yi(1) or Yi(0) accordingly. [Neyman 1923, Rubin 1974]

Assumption: no interference

Our goal: after observing units 1, . . . , t, we’d like to estimate

ATEt :=
1
t

t∑
i=1

[Yi(1)− Yi(0)].

Assumption: Yi(k) ∈ [0, 1] for k = 0, 1, all i.
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Average treatment effect: theorem

For each unit i, Xi is unbiased for the individual treatment effect Yi(1)− Yi(0),

Xi := Ŷi(1)− Ŷi(0) +
(

Zi − p
p(1− p)

)(
Yobsi − Ŷi(Zi)

)
(augmented inverse propensity weighting).

Theorem (H., Ramdas, McAuliffe, Sekhon 2021)
Assume no interference and Yt(k) ∈ [0, 1] for all k, t. Let uα be any
sub-exponential uniform boundary with scale 2/min{p, 1− p}. Then

P

∣∣X̄t − ATEt
∣∣ < uα

(∑t
i=1(Xi − X̂t)2

)
t for all t ∈ N

 ≥ 1− α.

The point: we can reduce ATE estimation to bounded mean estimation.
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)
(augmented inverse propensity weighting).

Theorem (H., Ramdas, McAuliffe, Sekhon 2021)
Assume no interference and Yt(k) ∈ [0, 1] for all k, t. Let uα be any
sub-exponential uniform boundary with scale 2/min{p, 1− p}. Then

P

∣∣X̄t − ATEt
∣∣ < uα

(∑t
i=1(Xi − X̂t)2

)
t for all t ∈ N

 ≥ 1− α.

The point: we can reduce ATE estimation to bounded mean estimation. 14



General treatment of adaptive allocation

What if assignment probability is time-changing (but predictable) Pt? Just replace
p with Pt:

Xt := Ŷt(1)− Ŷt(0) +
(

Zt − Pt
Pt(1− Pt)

)(
Yobst − Ŷt(Zt)

)
.

The rest of the argument goes through fine.

Works for any adaptive allocation scheme with exploration, i.e., all arms have
positive probability of being assigned at each time. (For Thompson sampling,
computing Pt may require some work.)

If we assume a stationary mean, can just use ordinary confidence sequence and
ignore assignment probabilities.
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Quantile estimation

X1, X2, . . . i.i.d. from any distribution F. Let q be the pth quantile of F, let Q̂t(p)
denote the pth sample quantile at time t.

Theorem
Suppose Xi are i.i.d. from any distribution F. Let uα,p be an appropriately scaled
sub-Bernoulli uniform boundary. Then

P
(
Q̂t

(
p−

uα,1−p(t)
t

)
≤ q ≤ Q̂t

(
p+

uα,p(t)
t

)
for all t ∈ N

)
≥ 1− α.

No assumption on the distribution F.
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Quantile estimation

Theorem
Suppose Xi are i.i.d. from any distribution F. Let uα,p be an appropriately scaled
sub-Bernoulli uniform boundary. Then

P
(
Q̂t

(
p−

uα,1−p(t)
t

)
≤ q ≤ Q̂t

(
p+

uα,p(t)
t

)
for all t ∈ N

)
≥ 1− α.

Using package confseq
u(t) = confseq.boundaries.beta_binomial_mixture_bound(

p * (1 - p) * t, alpha,
g = 1 - p, h = p,
v_opt = ...)
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Estimation of a cumulative distribution function

Theorem

Suppose Xi are i.i.d. from any distribution F. Let F̂t denote the empirical
cumulative distribution function at time t. Then

P

(∥∥∥F̂t − F
∥∥∥
∞

≤ A
√

log log(et) + C
t for all t ∈ N

)
≥ 1− e−O(A2C).

Using package confseq
u(t) = confseq.quantiles.empirical_process_lil_bound(
t, alpha, t_min=1)
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Frequently asked questions
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What about the intersection CI?

If P(θ ∈ CIt for all t ∈ N) ≥ 1− α, then it also holds that

P

θ ∈⋂
s≤t

CIs for all t ∈ N

 ≥ 1− α, (2)

Pro: smaller CIs

Cons:

• Not valid for time-varying estimands (θt)
• Can become empty
• Not a function of sufficient statistics at time t

See sec. 6 of https://arxiv.org/pdf/1810.08240.pdf.
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What about group sequential methods?

Key distinguishing features of group sequential methods:

• Require interim analysis schedule specifying a small number of “peeks”,
planned in advance

• Justified by central limit theorem

Pro: smaller CIs

Cons:

• Require more planning and expertise
• Only valid asymptotically
• Typically involve a finite endpoint
• Not appropriate for continuous monitoring
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What about Bayesian methods?

It is sometimes said that Bayesian methods are immune to peeking.

This is true only because Bayesian methods rewrite the interpretation of
probability.

• Bayesian methods will not, in general, achieve the frequentist guarantee
P(θt ∈ CIt for all t ∈ N) ≥ 1− α.

• Some confidence sequence methods have a Bayesian interpretation.
• Bayesian methods are a good way to introduce shrinkage, which can help
with selection bias. (But they come with no guarantees about bias, which is a
frequentist concept.)

Dawid (1994) “Selection paradoxes of Bayesian inference” is a nice reference.
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Confidence sequences for regression coefficients
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Basic mechanism for mean estimation

• Suppose X1, X2, ... are i.i.d. and we wish to estimate EX1.
• St(θ) :=

∑t
i=1(Xi − θ) is a martingale when θ = EX1.

• Uniform martingale concentration ⇒ |St(θ)| ≤ ut for all t with high
probability.

• We need some extra information about Xi − θ, for example boundedness.

• Invert to get confidence sequence: CIt := {θ : |St(θ)| ≤ ut}.

22



Martingales from univariate score functions

We just need a function g(x, θ) such that Eg(Xi, θ) = 0 at the desired value of θ.

• g(Xi, θ) = Xi − θ estimates the mean EXi
• g(Xi, θ) = 1Xi≤θ − p estimates the p-quantile
• In general, g(Xi, θ) = f′(Xi, θ) estimates the population minimizer of the
smooth, convex loss f.

• Confidence sequence for any M-estimator.
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Vector-valued martingales from multivariate score functions

There are uniform concentration results for vector-valued martingales, e.g.,

∥St(θ)∥2 ≤ ut for all t with high probability, (3)

where St(θ) takes values in Rd.

Let

f(yi, Xi, θ) =
1
2∥yi − XTi θ∥

2
2 (4)

g(yi, Xi, θ) = ∇f(yi, Xi, θ) = XTi (yi − XTt θ). (5)

Then St(θ) =
∑t

i=1 g(yi, Xi, θ) is a martingale when θ is the population OLS
coefficients.

(Straightforward in principle; implementation may be challenging.)
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Summary

• Peeking is a serious problem, and confidence sequences are a flexible
solution which allow continuous monitoring.

• We derive useful confidence sequences in a variety of nonparametric
settings, including for estimating average treatment effects under adaptive
allocation, quantiles, and CDFs.

• Estimating vector-valued minimizers of general loss functions is a frontier.
• For examples of vector-valued confidence sequences, see Abbasi-Yadkori et al.
(2011) “Improved Algorithms for Linear Stochastic Bandits”, or Corollary 10 of
https://arxiv.org/pdf/1808.03204.pdf.
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Thank you!

• steve@stevehoward.org
• Time-uniform Chernoff bounds via nonnegative supermartingales (2020):
https://arxiv.org/abs/1808.03204

• Time-uniform, nonparametric, nonasymptotic confidence sequences (2021):
https://arxiv.org/abs/1810.08240

• Sequential estimation of quantiles with applications to A/B-testing and
best-arm identification (2022): https://arxiv.org/abs/1906.09712

• Some state-of-the-art papers on the websites of Aaditya Ramdas and Ian
Waudby-Smith.

• Implementations of many uniform boundaries and confidence sequences:
https://github.com/gostevehoward/confseq

• Slides: stevehoward.org
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Appendix



We construct an unbiased estimator of each individual treatment effect.

We require predictions Ŷt(1) and Ŷt(0) for Yt(1) and Yt(0).

For each unit t, we construct an estimator Xt of the individual treatment effect
Yt(1)− Yt(0).

Xt depends on our predictions as well as the observed treatment and outcome.

Two key properties of Xt:

1. Unbiased: EXt = Yt(1)− Yt(0)
2. Variance of Xt depends on prediction errors (Yt(1)− Ŷt(1))2 and

(Yt(0)− Ŷt(0))2.

Let St =
∑t

i=1 Xi. Then St/t is unbiased for ATEt.
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(Yt(0)− Ŷt(0))2.

Let St =
∑t

i=1 Xi. Then St/t is unbiased for ATEt.



CLT confidence bounds

St
t ±

1.96
√∑t

i=1(Xi − X̄t)2

t

Uniform, non-asymptotic confidence bounds

St
t ±

uα
(∑t

i=1(Xi − X̂i)2
)

t where X̂i = Ŷi(1)− Ŷi(0).

•
∑t

i=1(Xi − X̂i)2 is an “online” estimate of Var(St).
• Estimation precision depends on prediction accuracy.
• uα(v) = O(

√
v log v), so uα(v) is like z1−α

√
v, but the “z-factor” grows over

time (slowly).
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•
∑t

i=1(Xi − X̂i)2 is an “online” estimate of Var(St).
• Estimation precision depends on prediction accuracy.
• uα(v) = O(

√
v log v), so uα(v) is like z1−α

√
v, but the “z-factor” grows over

time (slowly).



CLT confidence bounds

St
t ±

1.96
√∑t

i=1(Xi − X̄t)2

t

Uniform, non-asymptotic confidence bounds

St
t ±

uα
(∑t

i=1(Xi − X̂i)2
)

t where X̂i = Ŷi(1)− Ŷi(0).
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The uniform boundary grows only slightly faster than O(
√
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Confidence sequences are instrumental to many
best-arm identification algorithms.

Multi-armed bandit: set of distributions indexed by k = 1, . . . , K. Distribution k
has mean µk.

ϵ-best-arm identification with fixed confidence 1− δ: choose an arm k⋆ such that,
with probability at least 1− δ, we have µk⋆ ≥ maxk µk − ϵ. [Even-Dar et al. 2002]

Common strategy:

• Construct confidence sequence (Lkt,Ukt)
∞
t=1 for each arm k, so that

Lkt ≤ µk ≤ Ukt for all k, t with probability at least 1− δ.
• Stop the first time there exists some k⋆ such that

Lk⋆t ≥ Ukt − ϵ for all k ̸= k⋆.
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Arm differences can be examined directly.

Comparing confidence intervals for individual arm means is wasteful.

Better to compute confidence intervals on pairwise differences of arm means
directly.

• Related to asymptotically optimal stopping rule of Garivier and Kaufmann
(2016).

Can be done in our framework, allowing more efficient stopping in nonparametric
settings.

• Complete theory is work in progress
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Quantile best-arm identification

Let Qk(p) denote the pth quantile of arm k.

Quantile ϵ-best-arm identification with fixed confidence 1− δ: choose an arm k⋆
such that, with probability at least 1− δ, we have Qk⋆(p+ ϵ) ≥ maxk Qk(p). [Szörényi
et al. 2015]

QLUCB algorithm [H. and Ramdas 2019]: at each round,

• sample arm ht with highest LCB for Qk(p+ ϵ);
• sample arm with highest UCB for Qk(p), excluding ht; and
• stop when LCB for Qk(p+ ϵ) is above UCB for Qj(p) for all j ̸= k, for some k.

[cf. Kalyanakrishnan et al. 2012]
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A taste of the underlying framework



Reminder: sub-Gaussianity and Hoeffding bound

A random variable X is sub-Gaussian with variance parameter σ2 if

logEeλX ≤ λ2σ2

2 for all λ ∈ R. (6)

Hoeffding bound (1963): if Xi ∈ [0, 1] independent, i = 1, . . . , t, then

P

( t∑
i=1

(Xi − EXi) ≥
√

t logα−1

2

)
≤ α. (7)

Proof involves two main pieces:

1. Show Xi is sub-Gaussian with variance parameter 1/4, and
2. Use Cramér-Chernoff method to obtain (7) from (6).
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Reminder: sub-Gaussianity and Hoeffding bound

A random variable X is sub-Gaussian with variance parameter σ2 if

logEeλX ≤ ψ(λ)σ2 for all λ ∈ R. Here ψ(λ) = λ2

2 (6)

Hoeffding bound (1963): if Xi ∈ [0, 1] independent, i = 1, . . . , t, then
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Our recipe for confidence sequences

1. Assume a null hypothesis Hθ0 : θ = θ0.

2. Show process Sθ0t is sub-ψ with variance process Vθ0t under Hθ0 .
3. Choose any sub-ψ uniform boundary uα : R≥0 → R≥0. Then, under Hθ0 ,

P
(
Sθ0t ≥ uα(Vθ0t ) for some t ∈ N

)
≤ α.

4. At time t, a confidence set for θ is

CIt =
{
θ0 ∈ R : Sθ0t < uα(Vθ0t )

}
.
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Example: testing the bias of a coin

Suppose a coin has bias p. Let St be the number of heads observed up to time t.

The process St − tp is sub-Gaussian with variance process Vt = t/4.

Then, for any λ > 0,

P

St − tp ≥ logα−1

λ
+
λ

2 · t4︸ ︷︷ ︸
A linear boundary

for some t ∈ N

 ≤ α.

This yields the confidence sequence∣∣∣∣Stt − p
∣∣∣∣ < logα−1

λt +
λ

8 , for all t, with probability at least 1− 2α.
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Our framework includes self-normalized bounds.

Suppose Xi has a symmetric distribution conditional on X1, . . . , Xi−1.

Then St =
∑t

i=1 Xi is sub-Gaussian with variance process Vt =
∑t

i=1 X2i .
[de la Peña 1999]

So

P

( t∑
i=1

Xi ≥ uα

( t∑
i=1

X2i

)
for some t

)
≤ α.
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Our framework includes matrix bounds.

Suppose Xi is a Hermitian, d× d random matrix with a conditionally symmetric
distribution, Xi ∼ −Xi | X1, . . . , Xi−1.

Then St = γmax
(∑t

i=1 Xi
)
is sub-Gaussian with variance process

Vt = γmax
(∑t

i=1 X2i
)
. [de la Peña 1999, Tropp 2011]

So

P

(
γmax

( t∑
i=1

Xi

)
≥ uα,d

(
γmax

( t∑
i=1

X2i

))
for some t

)
≤ α.
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