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Sequential monitoring of experiment results is problematic.
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The promise and peril of sequential monitoring

Sequential monitoring can substantially inflate false positive rates.

But there are good reasons to do it:

• If the treatment effect is stronger than expected, we can stop early.
• If the treatment effect is weaker than expected (or the budget has increased),
we can extend the experiment.
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Outline

Sequential estimation of average treatment effect

A taste of the underlying framework

Self-normalized bounds, matrix bounds, quantile estimation
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Sequential estimation of average treatment effect
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We give a method to

• sequentially gather data from a randomized experiment,

• repeatedly compute a confidence interval for
average treatment effect,

• and stop the experiment at any time,

with the following guarantee:

No matter how you adaptively stop, you have a valid confidence interval for the
average treatment effect.

(Can compute always-valid p-values instead, if desired.)
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We avoid some unrealistic assumptions and problematic restrictions.

• No superpopulation or stationarity assumptions.

• No knowledge of the stopping rule.
• No bound on sample size.
• No asymptotic approximations or sharp null hypothesis.
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We assume fixed, bounded potential outcomes.

Unit t has fixed potential outcomes Yt(0), Yt(1), for t = 1, 2, . . .

We assign unit t randomly to treatment or control and observe Yt(1) or Yt(0)
accordingly [Neyman 1923, Rubin 1974]. This is the only source of randomness.

Assumption: no interference

Assumption: Yt(k) ∈ [0, 1] for k = 0, 1, all t.

• More on this later
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We define a sequence of average treatment effect estimands.

Our goal: aǕter observing units 1, . . . , t, we’d like to estimate

ATEt :=
1
t

t∑
i=1

[Yi(1)− Yi(0)].

A confidence sequence for (ATEt)∞t=1 is a sequence of intervals (CIt)∞t=1 satisfying

P(ATEt ∈ CIt for all t ∈ N) ≥ 1− α.

[Darling and Robbins 1967, Lai 1984, Jennison and Turnbull 1989, Johari et al. 2015]
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Point estimate
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We construct an unbiased estimator of each individual treatment effect.

We require predictions Ŷt(1) and Ŷt(0) for Yt(1) and Yt(0).

For each unit t, we construct an estimator Xt of the individual treatment effect
Yt(1)− Yt(0). (An augmented inverse propensity weighted estimator.)

Xt depends on our predictions as well as the observed treatment and outcome.

Two properties of Xt:

1. Unbiased: EXt = Yt(1)− Yt(0)
2. Variance of Xt depends on prediction errors (Yt(1)− Ŷt(1))2 and

(Yt(0)− Ŷt(0))2.

Let St =
∑t

i=1 Xi. Then St/t is unbiased for ATEt.
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CLT confidence bounds

St
t ±

1.96
√∑t

i=1(Xi − St/t)2

t

Uniform, nonasymptotic confidence bounds

St
t ±

uα
(∑t

i=1(Xi − X̂i)2
)

t where X̂i = Ŷi(1)− Ŷi(0).

•
∑t

i=1(Xi − X̂i)2 is an “online” estimate of Var(St).
• Estimation precision depends on prediction accuracy.
• uα(v) = O(

√
v log v), so uα(v) is like z1−α

√
v, but the “z-factor” grows over

time (slowly).
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The uniform boundary grows only slightly faster than O(
√
n)

Gamma-exponential mixture
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Theorem
Assuming no interference, if Yt(k) ∈ [0, 1] for all k, t, then

P

∣∣∣∣Stt − ATEt
∣∣∣∣ < uα

(∑t
i=1(Xi − X̂t)2

)
t for all t ∈ N

 ≥ 1− α.

This implies

St
t ±

uα
(∑t

i=1(Xi − X̂i)2
)

t

gives a (1− α)-confidence sequence for (ATEt).
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What about that boundedness assumption?

Without some similar assumption, it is impossible to construct a confidence
interval.

The problem: one outlier can have arbitrarily large influence.

• Consider Y1(1) = t, Y1(0) = 0, and Yi(k) = 0 for all k = 0, 1 and i = 2, . . . , t.

Asymptotic arguments oǕten sweep this issue under the rug.
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ATEt
Point estimate
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Recap of ATE application

• Nonasymptotic confidence sequences for ATEt
• Flexible inferential tool for sequential experiments
• Provable coverage under the assumption of bounded potential outcomes
• Replace central limit theorem argument with uniform concentration bounds
• Seamlessly handles “biased coin” or other adaptive allocation designs (not
covered today)
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A taste of the proof techniques
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Example: testing the bias of a coin

Suppose a coin has bias p. Let St be the number of heads observed up to time t.

To test H0 : p ≤ p0 for fixed t, we need a result like

P0(St − tp > uα(t)) ≤ α (e.g, uα(t) = z1−α

√
p(1− p)t).

For a sequential test, we need a result like

P0(St − tp > uα(t) for some t ∈ N) ≤ α.
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A simple confidence sequence

For a sequential test, we need a result like

P0(St − tp > uα(t) for some t ∈ N) ≤ α.

Here’s one such result: for any λ > 0,

P

St − tp ≥ logα−1

λ
+

λ

2 · t4︸ ︷︷ ︸
A linear boundary

for some t ∈ N

 ≤ α.

This yields the confidence sequence∣∣∣∣Stt − p
∣∣∣∣ < logα−1

λt +
λ

8 , for all t, with probability at least 1− 2α.
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Fixed-sample Hoeffding bound

St − tp is a sub-Gaussian random variable with variance parameter t/4:

E exp {λ(St − tp)} ≤ exp
{
λ2

2 · t4

}
.

Markov’s inequality:

P
(
exp

{
λ(St − tp)− λ2

2 · t4

}
≥ x
)

≤ 1
x .
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Time-uniform Hoeffding bound

The process (St − tp)t∈N is a sub-Gaussian process with variance process Vt = t/4:

exp
{
λ(St − tp)− λ2

2 · t4

}
is a supermartingale.

Ville’s inequality:

P
(
exp

{
λ(St − tp)− λ2

2 · t4

}
≥ x for some t ∈ N

)
≤ 1

x .
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Our framework includes self-normalized bounds.

Suppose Xi has a symmetric distribution conditional on X1, . . . , Xi−1.

Then St =
∑t

i=1 Xi is sub-Gaussian with variance process Vt =
∑t

i=1 X2i .
[de la Peña 1999]

So

P

( t∑
i=1

Xi ≥ uα

( t∑
i=1

X2i

)
for some t

)
≤ α.

23
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Our framework includes matrix bounds.

Suppose Xi is a Hermitian, d× d random matrix with a conditionally symmetric
distribution, Xi ∼ −Xi | X1, . . . , Xi−1.

Then St = γmax
(∑t

i=1 Xi
)
is sub-Gaussian with variance process

Vt = γmax
(∑t

i=1 X2i
)
. [de la Peña 1999, Tropp 2011]

So

P

(
γmax

( t∑
i=1

Xi

)
≥ uα,d

(
γmax

( t∑
i=1

X2i

))
for some t

)
≤ α.
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Quantile estimation

X1, X2, . . . i.i.d. from any distribution F. Let q be the pth quantile of F, let Q̂t(p)
denote the pth sample quantile at time t.

Theorem
Suppose Xi are i.i.d. from any distribution F. Let uα,p be an appropriately scaled
sub-Bernoulli uniform boundary. Then

P
(
Q̂t

(
p−

uα,1−p(t)
t

)
≤ q ≤ Q̂t

(
p+

uα,p(t)
t

)
for all t ∈ N

)
≥ 1− α.

No assumption on the distribution F.
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Summary

• Peeking is a serious problem, and confidence sequences are a flexible
solution.

• We derive useful confidence sequences in a variety of nonparametric
settings, including for estimating average treatment effect and quantiles.

• Our underlying framework extends the Cramér-Chernoff method, unifying
many existing results and yielding new confidence sequences in diverse
settings.
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Thank you!

• steve@stevehoward.org
• Time-uniform, nonparametric, nonasymptotic confidence sequences. Annals
of Statistics, 2021. With A. Ramdas, J. McAuliffe, J. Sekhon.

• Time-uniform Chernoff bounds via nonnegative supermartingales.
Probability Surveys, 2020. With A. Ramdas, J. McAuliffe, J. Sekhon.

• Sequential estimation of quantiles with applications best-arm identification
and A/B-testing. Bernoulli, to appear. With A. Ramdas.

• Implementations of many uniform boundaries and confidence sequences:
https://github.com/gostevehoward/confseq

• Slides: stevehoward.org
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