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Sequential monitoring of experiment results is problematic.
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One path of p-values from a fair coin
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Let’s look at many such paths... 3



With no bias, we only rarely conclude the coin is biased.
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Just one out of 25 p-values is below 0.05. 4



Continuous monitoring of fixed-sample p-values inflates the false positive rate.
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Here, with a fair coin, eight out of 25 paths reach significance. 5



The false positive rate grows arbitrarily large with enough flips.
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The promise and peril of sequential monitoring

Sequential monitoring can substantially inflate false positive rates.

But there are good reasons to do it:

• If the treatment effect is stronger than expected, we can stop early.
• If the treatment effect is weaker than expected (or the budget has increased),
we can extend the experiment.

How should we enable sequential monitoring without inflating false positive
rates?
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Confidence sequences solve the problem of continuous monitoring.

A confidence sequence for (θt)∞t=1 is a sequence of intervals (CIt)∞t=1 satisfying

P(θt ∈ CIt for all t ∈ N) ≥ 1− α.

[Darling and Robbins 1967, Lai 1984, Jennison and Turnbull 1989, Johari et al. 2015, H. et al. 2018]

Much stronger than the fixed-sample guarantee:

For all t ∈ N,P(θt ∈ CIt) ≥ 1− α.
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Outline

Some key results

Application to best-arm identification

A taste of the underlying framework
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Some key results
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Empirical-Bernstein confidence sequence

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)

Suppose Xi are independent and [a,b]-valued for all i. Let X̂i be any predictable
sequence and uα be any sub-exponential uniform boundary with scale b− a.
Then

P

∣∣X̄t − EX̄t
∣∣ < uα

(∑t
i=1(Xi − X̂i)2

)
t for all t ∈ N

 ≥ 1− 2α.

Using package confseq
u(v) = confseq.boundaries.gamma_exponential_mixture_bound(

v, alpha, c = b - a, v_opt = ...)
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Average treatment effect: setup

Unit i has fixed potential outcomes Yi(0), Yi(1), for i = 1, 2, . . .

We assign unit i randomly to treatment with probability p or control with
probability 1− p, and observe Yi(1) or Yi(0) accordingly. [Neyman 1923, Rubin 1974]

Assumption: no interference

Our goal: aǕter observing units 1, . . . , t, we’d like to estimate

ATEt :=
1
t

t∑
i=1

[Yi(1)− Yi(0)].

Assumption: Yi(k) ∈ [0, 1] for k = 0, 1, all i.
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Average treatment effect: theorem

For each unit i, we construct an estimator Xi of the individual treatment effect
Yi(1)− Yi(0) with two key properties:

1. Unbiased: EXi = Yi(1)− Yi(0)
2. Variance of Xi depends on prediction errors (Yi(1)− Ŷi(1))2 and

(Yi(0)− Ŷi(0))2.

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)
Assume no interference and Yt(k) ∈ [0, 1] for all k, t. Let uα be any
sub-exponential uniform boundary with scale 2/min{p, 1− p}. Then

P

∣∣X̄t − ATEt
∣∣ < uα

(∑t
i=1(Xi − X̂t)2

)
t for all t ∈ N

 ≥ 1− α.
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Average treatment effect: illustration
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Average treatment effect: illustration

ATEt
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CLT

Our bound

0.0

0.1

0.2

0.3

102 103 104 105

t  (log scale)

Up
pe

r C
on

fid
en

ce
 s

eq
ue

nc
e 

fo
r A

TE
t

14



Quantile estimation

X1, X2, . . . i.i.d. from any distribution F. Let q be the pth quantile of F, let Q̂t(p)
denote the pth sample quantile at time t.

Theorem
Suppose Xi are i.i.d. from any distribution F. Let uα,p be an appropriately scaled
sub-Bernoulli uniform boundary. Then

P
(
Q̂t

(
p−

uα,1−p(t)
t

)
≤ q ≤ Q̂t

(
p+

uα,p(t)
t

)
for all t ∈ N

)
≥ 1− α.

No assumption on the distribution F.
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Quantile estimation

Theorem
Suppose Xi are i.i.d. from any distribution F. Let uα,p be an appropriately scaled
sub-Bernoulli uniform boundary. Then

P
(
Q̂t

(
p−

uα,1−p(t)
t

)
≤ q ≤ Q̂t

(
p+

uα,p(t)
t

)
for all t ∈ N

)
≥ 1− α.

Using package confseq
u(t) = confseq.boundaries.beta_binomial_mixture_bound(

p * (1 - p) * t, alpha,
g = 1 - p, h = p,
v_opt = ...)
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Estimation of a cumulative distribution function

Theorem

Suppose Xi are i.i.d. from any distribution F. Let F̂t denote the empirical
cumulative distribution function at time t. Then

P

(∥∥∥F̂t − F
∥∥∥
∞

≤ A
√

log log(et) + C
t for all t ∈ N

)
≥ 1− e−O(A2C).

Using package confseq
u(t) = confseq.quantiles.empirical_process_lil_bound(
t, alpha, t_min=1)
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Best-arm identification
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Confidence sequences are instrumental to many
best-arm identification algorithms.

Multi-armed bandit: set of distributions indexed by k = 1, . . . , K. Distribution k
has mean µk.

ϵ-best-arm identification with fixed confidence 1− δ: choose an arm k⋆ such that,
with probability at least 1− δ, we have µk⋆ ≥ maxk µk − ϵ. [Even-Dar et al. 2002]

Common strategy:

• Construct confidence sequence (Lkt,Ukt)
∞
t=1 for each arm k, so that

Lkt ≤ µk ≤ Ukt for all k, t with probability at least 1− δ.
• Stop the first time there exists some k⋆ such that

Lk⋆t ≥ Ukt − ϵ for all k ̸= k⋆.
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Arm differences can be examined directly.

Comparing confidence intervals for individual arm means is wasteful.

Better to compute confidence intervals on pairwise differences of arm means
directly.

• Related to asymptotically optimal stopping rule of Garivier and Kaufmann
(2016).

Can be done in our framework, allowing more efficient stopping in nonparametric
settings.

• Complete theory is work in progress
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Quantile best-arm identification

Let Qk(p) denote the pth quantile of arm k.

Quantile ϵ-best-arm identification with fixed confidence 1− δ: choose an arm k⋆
such that, with probability at least 1− δ, we have Qk⋆(p+ ϵ) ≥ maxk Qk(p). [Szörényi
et al. 2015]

QLUCB algorithm [H. and Ramdas 2019]: at each round,

• sample arm ht with highest LCB for Qk(p+ ϵ);
• sample arm with highest UCB for Qk(p), excluding ht; and
• stop when LCB for Qk(p+ ϵ) is above UCB for Qj(p) for all j ̸= k, for some k.

[cf. Kalyanakrishnan et al. 2012]
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Quantile best-arm simulations
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A taste of the underlying framework
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Reminder: sub-Gaussianity and Hoeffding bound

A random variable X is sub-Gaussian with variance parameter σ2 if

logEeλX ≤ λ2σ2

2 for all λ ∈ R. (1)

Hoeffding bound (1963): if Xi ∈ [0, 1] independent, i = 1, . . . , t, then

P

( t∑
i=1

(Xi − EXi) ≥
√

t logα−1

2

)
≤ α. (2)

Proof involves two main pieces:

1. Show Xi is sub-Gaussian with variance parameter 1/4, and
2. Use Cramér-Chernoff method to obtain (2) from (1).
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Reminder: sub-Gaussianity and Hoeffding bound

A random variable X is sub-Gaussian with variance parameter σ2 if
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2v logα−1, σ2 =
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Our recipe for confidence sequences

1. Assume a null hypothesis Hθ0 : θ = θ0.

2. Show process Sθ0t is sub-ψ with variance process Vθ0t under Hθ0 .
3. Choose any sub-ψ uniform boundary uα : R≥0 → R≥0. Then, under Hθ0 ,

P
(
Sθ0t ≥ uα(Vθ0t ) for some t ∈ N

)
≤ α.

4. At time t, a confidence set for θ is

CIt =
{
θ0 ∈ R : Sθ0t < uα(Vθ0t )

}
.

24
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Example: testing the bias of a coin

Suppose a coin has bias p. Let St be the number of heads observed up to time t.

The process St − tp is sub-Gaussian with variance process Vt = t/4.

Then, for any λ > 0,

P

St − tp ≥ logα−1

λ
+
λ

2 · t4︸ ︷︷ ︸
A linear boundary

for some t ∈ N

 ≤ α.

This yields the confidence sequence∣∣∣∣Stt − p
∣∣∣∣ < logα−1

λt +
λ

8 , for all t, with probability at least 1− 2α.
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Our framework includes self-normalized bounds.

Suppose Xi has a symmetric distribution conditional on X1, . . . , Xi−1.

Then St =
∑t

i=1 Xi is sub-Gaussian with variance process Vt =
∑t

i=1 X2i .
[de la Peña 1999]

So

P

( t∑
i=1

Xi ≥ uα

( t∑
i=1

X2i

)
for some t

)
≤ α.

27



Our framework includes self-normalized bounds.

Suppose Xi has a symmetric distribution conditional on X1, . . . , Xi−1.

Then St =
∑t

i=1 Xi is sub-Gaussian with variance process Vt =
∑t

i=1 X2i .
[de la Peña 1999]

So

P

( t∑
i=1

Xi ≥ uα

( t∑
i=1

X2i

)
for some t

)
≤ α.

27



Our framework includes self-normalized bounds.

Suppose Xi has a symmetric distribution conditional on X1, . . . , Xi−1.

Then St =
∑t

i=1 Xi is sub-Gaussian with variance process Vt =
∑t

i=1 X2i .
[de la Peña 1999]

So

P

( t∑
i=1

Xi ≥ uα

( t∑
i=1

X2i

)
for some t

)
≤ α.

27



Our framework includes matrix bounds.

Suppose Xi is a Hermitian, d× d random matrix with a conditionally symmetric
distribution, Xi ∼ −Xi | X1, . . . , Xi−1.

Then St = γmax
(∑t

i=1 Xi
)
is sub-Gaussian with variance process

Vt = γmax
(∑t

i=1 X2i
)
. [de la Peña 1999, Tropp 2011]

So

P

(
γmax

( t∑
i=1

Xi

)
≥ uα,d

(
γmax

( t∑
i=1

X2i

))
for some t

)
≤ α.
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Summary

• Peeking is a serious problem, and confidence sequences are a flexible
solution.

• We derive useful confidence sequences in a variety of nonparametric
settings, including for estimating average treatment effect and quantiles.

• Our confidence sequences immediately improve best-arm identification
algorithms and extend validity to nonparametric settings.

• Our underlying framework extends the Cramér-Chernoff method, unifying
many existing results and yielding new confidence sequences in diverse
settings.
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Thank you!

• stevehoward@berkeley.edu
• Exponential line-crossing inequalities:
https://arxiv.org/abs/1808.03204

• Uniform, nonparametric, non-asymptotic confidence sequences:
https://arxiv.org/abs/1810.08240

• Sequential estimation of quantiles with applications to A/B-testing and
best-arm identification: https://arxiv.org/abs/1906.09712

• Implementations of many uniform boundaries and confidence sequences:
https://github.com/gostevehoward/confseq

• Slides: stevehoward.org
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We construct an unbiased estimator of each individual treatment effect.

We require predictions Ŷt(1) and Ŷt(0) for Yt(1) and Yt(0).

For each unit t, we construct an estimator Xt of the individual treatment effect
Yt(1)− Yt(0).

Xt depends on our predictions as well as the observed treatment and outcome.

Two key properties of Xt:

1. Unbiased: EXt = Yt(1)− Yt(0)
2. Variance of Xt depends on prediction errors (Yt(1)− Ŷt(1))2 and

(Yt(0)− Ŷt(0))2.

Let St =
∑t

i=1 Xi. Then St/t is unbiased for ATEt.



We construct an unbiased estimator of each individual treatment effect.
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CLT confidence bounds

St
t ±

1.96
√∑t

i=1(Xi − X̄t)2

t

Uniform, non-asymptotic confidence bounds

St
t ±

uα
(∑t

i=1(Xi − X̂i)2
)

t where X̂i = Ŷi(1)− Ŷi(0).

•
∑t

i=1(Xi − X̂i)2 is an “online” estimate of Var(St).
• Estimation precision depends on prediction accuracy.
• uα(v) = O(

√
v log v), so uα(v) is like z1−α

√
v, but the “z-factor” grows over

time (slowly).
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The uniform boundary grows only slightly faster than O(
√
n)

Gamma-exponential mixture
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What about that boundedness assumption?

Without some similar assumption, it is impossible to construct a confidence
interval.

The problem: one outlier can have arbitrarily large influence.

• Consider Y1(1) = t, Y1(0) = 0, and Yi(k) = 0 for all k = 0, 1 and i = 2, . . . , t.

Asymptotic arguments oǕten sweep this issue under the rug.
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