Confidence sequences for sequential experimentation and best-arm identification

Steve Howard Joint work with Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon September 5, 2019

Sequential monitoring of experiment results is problematic.

One path of *p*-values from a fair coin

Let's look at many such paths...

With no bias, we only rarely conclude the coin is biased.

Just one out of 25 *p*-values is below 0.05.

Continuous monitoring of fixed-sample p-values inflates the false positive rate.

Here, with a fair coin, eight out of 25 paths reach significance.

The false positive rate grows arbitrarily large with enough flips.

But there are good reasons to do it:

• If the treatment effect is stronger than expected, we can stop early.

But there are good reasons to do it:

- If the treatment effect is stronger than expected, we can stop early.
- If the treatment effect is weaker than expected (or the budget has increased), we can extend the experiment.

But there are good reasons to do it:

- If the treatment effect is stronger than expected, we can stop early.
- If the treatment effect is weaker than expected (or the budget has increased), we can extend the experiment.

How should we enable sequential monitoring without inflating false positive rates?

A **confidence sequence** for $(\theta_t)_{t=1}^{\infty}$ is a sequence of intervals $(CI_t)_{t=1}^{\infty}$ satisfying

 $\mathbb{P}(\theta_t \in \mathsf{Cl}_t \text{ for all } t \in \mathbb{N}) \geq 1 - \alpha.$

[Darling and Robbins 1967, Lai 1984, Jennison and Turnbull 1989, Johari et al. 2015, H. et al. 2018]

A confidence sequence for $(\theta_t)_{t=1}^{\infty}$ is a sequence of intervals $(Cl_t)_{t=1}^{\infty}$ satisfying

 $\mathbb{P}(\theta_t \in \mathsf{Cl}_t \text{ for all } t \in \mathbb{N}) \geq 1 - \alpha.$

[Darling and Robbins 1967, Lai 1984, Jennison and Turnbull 1989, Johari et al. 2015, H. et al. 2018]

Much stronger than the fixed-sample guarantee:

For all $t \in \mathbb{N}$, $\mathbb{P}(\theta_t \in Cl_t) \ge 1 - \alpha$.

Outline

Some key results

Application to best-arm identification

A taste of the underlying framework

Some key results

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)

Suppose X_i are independent and [a, b]-valued for all i. Let \hat{X}_i be any predictable sequence and u_{α} be any sub-exponential uniform boundary with scale b - a. Then

$$\mathbb{P}\left(\left|\bar{X}_t - \mathbb{E}\bar{X}_t\right| < \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_i)^2\right)}{t} \text{ for all } t \in \mathbb{N}\right) \ge 1 - 2\alpha.$$

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)

Suppose X_i are independent and [a, b]-valued for all i. Let \hat{X}_i be any predictable sequence and u_{α} be any sub-exponential uniform boundary with scale b - a. Then

$$\mathbb{P}\left(\left|\overline{X}_{t}-\mathbb{E}\overline{X}_{t}\right| < \frac{u_{\alpha}\left(\sum_{i=1}^{t}(X_{i}-\widehat{X}_{i})^{2}\right)}{t} \text{ for all } t \in \mathbb{N}\right) \geq 1-2\alpha.$$

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)

Suppose X_i are independent and [a, b]-valued for all i. Let \hat{X}_i be any predictable sequence and u_{α} be any sub-exponential uniform boundary with scale b - a. Then

$$\mathbb{P}\left(\left|\bar{X}_t - \mathbb{E}\bar{X}_t\right| < \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_i)^2\right)}{t} \text{ for all } t \in \mathbb{N}\right) \ge 1 - 2\alpha.$$

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)

Suppose X_i are independent and [a, b]-valued for all i. Let \hat{X}_i be any predictable sequence and u_{α} be any sub-exponential uniform boundary with scale b - a. Then

$$\mathbb{P}\left(\left|\bar{X}_t - \mathbb{E}\bar{X}_t\right| < \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_i)^2\right)}{t} \text{ for all } t \in \mathbb{N}\right) \ge 1 - 2\alpha.$$

Here $u_{\alpha}(v)$ is $\mathcal{O}(\sqrt{v \log v})$ or $\mathcal{O}(\sqrt{v \log \log v})$.

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)

Suppose X_i are independent and [a, b]-valued for all i. Let \hat{X}_i be any predictable sequence and u_{α} be any sub-exponential uniform boundary with scale b - a. Then

$$\mathbb{P}\left(\left|\bar{X}_t - \mathbb{E}\bar{X}_t\right| < \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_i)^2\right)}{t} \text{ for all } t \in \mathbb{N}\right) \ge 1 - 2\alpha.$$

Using package confseq

u(v) = confseq.boundaries.gamma_exponential_mixture_bound(
v, alpha, c = b - a, v_opt = ...)

We assign unit *i* randomly to treatment with probability *p* or control with probability 1 - p, and observe $Y_i(1)$ or $Y_i(0)$ accordingly. [Neyman 1923, Rubin 1974]

We assign unit *i* randomly to treatment with probability *p* or control with probability 1 - p, and observe $Y_i(1)$ or $Y_i(0)$ accordingly. [Neyman 1923, Rubin 1974]

Assumption: no interference

We assign unit *i* randomly to treatment with probability *p* or control with probability 1 - p, and observe $Y_i(1)$ or $Y_i(0)$ accordingly. [Neyman 1923, Rubin 1974]

Assumption: no interference

Our goal: after observing units $1, \ldots, t$, we'd like to estimate

$$ATE_t := \frac{1}{t} \sum_{i=1}^{t} [Y_i(1) - Y_i(0)].$$

We assign unit *i* randomly to treatment with probability *p* or control with probability 1 - p, and observe $Y_i(1)$ or $Y_i(0)$ accordingly. [Neyman 1923, Rubin 1974]

Assumption: no interference

Our goal: after observing units $1, \ldots, t$, we'd like to estimate

$$ATE_t := \frac{1}{t} \sum_{i=1}^{t} [Y_i(1) - Y_i(0)].$$

Assumption: $Y_i(k) \in [0, 1]$ for k = 0, 1, all i.

For each unit *i*, we construct an estimator X_i of the individual treatment effect $Y_i(1) - Y_i(0)$ with two key properties:

1. Unbiased: $\mathbb{E}X_i = Y_i(1) - Y_i(0)$

2. Variance of X_i depends on prediction errors $(Y_i(1) - \widehat{Y}_i(1))^2$ and $(Y_i(0) - \widehat{Y}_i(0))^2$.

For each unit *i*, we construct an estimator X_i of the individual treatment effect $Y_i(1) - Y_i(0)$ with two key properties:

1. Unbiased: $\mathbb{E}X_i = Y_i(1) - Y_i(0)$

2. Variance of X_i depends on prediction errors $(Y_i(1) - \widehat{Y}_i(1))^2$ and $(Y_i(0) - \widehat{Y}_i(0))^2$.

Theorem (H., Ramdas, McAuliffe, Sekhon 2018)

Assume no interference and $Y_t(k) \in [0, 1]$ for all k,t. Let u_{α} be any sub-exponential uniform boundary with scale $2/\min\{p, 1-p\}$. Then

$$\mathbb{P}\left(\left|\bar{X}_t - \mathsf{ATE}_t\right| < \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_t)^2\right)}{t} \text{ for all } t \in \mathbb{N}\right) \ge 1 - \alpha.$$

 X_1, X_2, \ldots i.i.d. from any distribution *F*. Let *q* be the *p*th quantile of *F*, let $\widehat{Q}_t(p)$ denote the *p*th sample quantile at time *t*.

 X_1, X_2, \ldots i.i.d. from any distribution *F*. Let *q* be the *p*th quantile of *F*, let $\widehat{Q}_t(p)$ denote the *p*th sample quantile at time *t*.

Theorem

Suppose X_i are i.i.d. from any distribution F. Let $u_{\alpha,p}$ be an appropriately scaled sub-Bernoulli uniform boundary. Then

$$\mathbb{P}\left(\widehat{Q}_t\left(p-\frac{u_{\alpha,1-p}(t)}{t}\right) \leq q \leq \widehat{Q}_t\left(p+\frac{u_{\alpha,p}(t)}{t}\right) \text{ for all } t \in \mathbb{N}\right) \geq 1-\alpha.$$

 X_1, X_2, \ldots i.i.d. from any distribution *F*. Let *q* be the *p*th quantile of *F*, let $\widehat{Q}_t(p)$ denote the *p*th sample quantile at time *t*.

Theorem

Suppose X_i are i.i.d. from any distribution F. Let $u_{\alpha,p}$ be an appropriately scaled sub-Bernoulli uniform boundary. Then

$$\mathbb{P}\left(\widehat{Q}_t\left(p-\frac{u_{\alpha,1-p}(t)}{t}\right) \leq q \leq \widehat{Q}_t\left(p+\frac{u_{\alpha,p}(t)}{t}\right) \text{ for all } t \in \mathbb{N}\right) \geq 1-\alpha.$$

No assumption on the distribution *F*.

Quantile estimation

Theorem

Suppose X_i are i.i.d. from any distribution F. Let $u_{\alpha,p}$ be an appropriately scaled sub-Bernoulli uniform boundary. Then

$$\mathbb{P}\left(\widehat{Q}_t\left(p-\frac{u_{\alpha,1-p}(t)}{t}\right) \leq q \leq \widehat{Q}_t\left(p+\frac{u_{\alpha,p}(t)}{t}\right) \text{ for all } t \in \mathbb{N}\right) \geq 1-\alpha.$$

Using package confseq

Estimation of a cumulative distribution function

Theorem

Suppose X_i are i.i.d. from any distribution F. Let \hat{F}_t denote the empirical cumulative distribution function at time t. Then

$$\mathbb{P}\left(\left\|\widehat{F}_t - F\right\|_{\infty} \le A\sqrt{\frac{\log\log(et) + C}{t}} \text{ for all } t \in \mathbb{N}\right) \ge 1 - e^{-\mathcal{O}(A^2C)}$$
Estimation of a cumulative distribution function

Theorem

Suppose X_i are i.i.d. from any distribution F. Let \hat{F}_t denote the empirical cumulative distribution function at time t. Then

$$\mathbb{P}\left(\left\|\widehat{F}_t - F\right\|_{\infty} \le A\sqrt{\frac{\log\log(et) + C}{t}} \text{ for all } t \in \mathbb{N}\right) \ge 1 - e^{-\mathcal{O}(A^2C)}$$

Using package confseq

u(t) = confseq.quantiles.empirical_process_lil_bound(
 t, alpha, t_min=1)

Best-arm identification

Confidence sequences are instrumental to many best-arm identification algorithms.

Multi-armed bandit: set of distributions indexed by k = 1, ..., K. Distribution k has mean μ_k .

Confidence sequences are instrumental to many best-arm identification algorithms.

Multi-armed bandit: set of distributions indexed by k = 1, ..., K. Distribution k has mean μ_k .

 ϵ -best-arm identification with fixed confidence $1 - \delta$: choose an arm k_{\star} such that, with probability at least $1 - \delta$, we have $\mu_{k_{\star}} \ge \max_{k} \mu_{k} - \epsilon$. [Even-Dar et al. 2002]

Confidence sequences are instrumental to many best-arm identification algorithms.

Multi-armed bandit: set of distributions indexed by k = 1, ..., K. Distribution k has mean μ_k .

 ϵ -best-arm identification with fixed confidence $1 - \delta$: choose an arm k_{\star} such that, with probability at least $1 - \delta$, we have $\mu_{k_{\star}} \ge \max_{k} \mu_{k} - \epsilon$. [Even-Dar et al. 2002]

Common strategy:

- Construct confidence sequence $(L_{kt}, U_{kt})_{t=1}^{\infty}$ for each arm k, so that $L_{kt} \leq \mu_k \leq U_{kt}$ for all k, t with probability at least 1δ .
- \cdot Stop the first time there exists some k_{\star} such that

$$L_{k\star t} \ge U_{kt} - \epsilon$$
 for all $k \neq k_{\star}$.

Comparing confidence intervals for *individual arm means* is wasteful. Better to compute confidence intervals on *pairwise differences of arm means* directly.

• Related to asymptotically optimal stopping rule of Garivier and Kaufmann (2016).

Comparing confidence intervals for *individual arm means* is wasteful.

Better to compute confidence intervals on *pairwise differences of arm means* directly.

• Related to asymptotically optimal stopping rule of Garivier and Kaufmann (2016).

Can be done in our framework, allowing more efficient stopping in nonparametric settings.

• Complete theory is work in progress

Let $Q_k(p)$ denote the p^{th} quantile of arm k.

Quantile ϵ -best-arm identification with fixed confidence $1 - \delta$: choose an arm k_{\star} such that, with probability at least $1 - \delta$, we have $Q_{k_{\star}}(p + \epsilon) \ge \max_{k} Q_{k}(p)$. [Szörényi et al. 2015]

Let $Q_k(p)$ denote the p^{th} quantile of arm k.

Quantile ϵ -best-arm identification with fixed confidence $1 - \delta$: choose an arm k_* such that, with probability at least $1 - \delta$, we have $Q_{k_*}(p + \epsilon) \ge \max_k Q_k(p)$. [Szörényi et al. 2015]

QLUCB algorithm [H. and Ramdas 2019]: at each round,

- sample arm h_t with highest LCB for $Q_k(p + \epsilon)$;
- sample arm with highest UCB for $Q_k(p)$, excluding h_t ; and
- stop when LCB for $Q_k(p + \epsilon)$ is above UCB for $Q_j(p)$ for all $j \neq k$, for some k.

[cf. Kalyanakrishnan et al. 2012]

Quantile best-arm simulations

 $-\Box$ - David and Shimkin (2016)

-**o**- Szörényi et al. (2015)

 $-\Delta$ - QLUCB stitched (ours)

-+- QLUCB beta-binomial (ours)

A taste of the underlying framework

A random variable X is sub-Gaussian with variance parameter σ^2 if

$$\log \mathbb{E}e^{\lambda X} \le \frac{\lambda^2 \sigma^2}{2} \quad \text{for all } \lambda \in \mathbb{R}. \tag{1}$$

A random variable X is sub-Gaussian with variance parameter σ^2 if

$$\log \mathbb{E}e^{\lambda \chi} \le \frac{\lambda^2 \sigma^2}{2} \quad \text{for all } \lambda \in \mathbb{R}.$$
 (1)

Hoeffding bound (1963): if $X_i \in [0, 1]$ independent, i = 1, ..., t, then

$$\mathbb{P}\left(\sum_{i=1}^{t} (X_i - \mathbb{E}X_i) \ge \sqrt{\frac{t\log\alpha^{-1}}{2}}\right) \le \alpha.$$
(2)

A random variable X is sub-Gaussian with variance parameter σ^2 if

$$\log \mathbb{E}e^{\lambda \chi} \le \frac{\lambda^2 \sigma^2}{2} \quad \text{for all } \lambda \in \mathbb{R}.$$
 (1)

Hoeffding bound (1963): if $X_i \in [0, 1]$ independent, i = 1, ..., t, then

$$\mathbb{P}\left(\sum_{i=1}^{t} (X_i - \mathbb{E}X_i) \ge \sqrt{\frac{t\log\alpha^{-1}}{2}}\right) \le \alpha.$$
(2)

Proof involves two main pieces:

- 1. Show X_i is sub-Gaussian with variance parameter 1/4, and
- 2. Use Cramér-Chernoff method to obtain (2) from (1).

A random variable X is sub-Gaussian with variance parameter σ^2 if

$$\log \mathbb{E}e^{\lambda \lambda} \leq \psi(\lambda)\sigma^2$$
 for all $\lambda \in \mathbb{R}$. Here $\psi(\lambda) = rac{\lambda^2}{2}$ (1)

Hoeffding bound (1963): if $X_i \in [0, 1]$ independent, i = 1, ..., t, then

$$\mathbb{P}\left(\sum_{i=1}^{t} (X_i - \mathbb{E}X_i) \ge u_{\psi}(t\sigma^2)\right) \le \alpha. \quad \text{Here } u_{\psi}(v) = \sqrt{2v\log\alpha^{-1}}, \ \sigma^2 = \frac{1}{4} \quad (2)$$

Proof involves two main pieces:

- 1. Show X_i is sub-Gaussian with variance parameter 1/4, and
- 2. Use Cramér-Chernoff method to obtain (2) from (1).

1. Assume a null hypothesis $H_{\theta_0}: \theta = \theta_0$.

- 1. Assume a null hypothesis $H_{\theta_0}: \theta = \theta_0$.
- 2. Show process $S_t^{\theta_0}$ is sub- ψ with variance process $V_t^{\theta_0}$ under H_{θ_0} .

- 1. Assume a null hypothesis $H_{\theta_0}: \theta = \theta_0$.
- 2. Show process $S_t^{\theta_0}$ is sub- ψ with variance process $V_t^{\theta_0}$ under H_{θ_0} .
- 3. Choose any sub- ψ uniform boundary $u_{\alpha} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$. Then, under H_{θ_0} ,

$$\mathbb{P}\left(S_t^{\theta_0} \ge u_{\alpha}(\mathsf{V}_t^{\theta_0}) \text{ for some } t \in \mathbb{N}\right) \le \alpha.$$

- 1. Assume a null hypothesis $H_{\theta_0}: \theta = \theta_0$.
- 2. Show process $S_t^{\theta_0}$ is sub- ψ with variance process $V_t^{\theta_0}$ under H_{θ_0} .
- 3. Choose any sub- ψ uniform boundary $u_{\alpha} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$. Then, under H_{θ_0} ,

$$\mathbb{P}\left(S_t^{\theta_0} \ge u_{\alpha}(V_t^{\theta_0}) \text{ for some } t \in \mathbb{N}\right) \le \alpha.$$

4. At time *t*, a confidence set for θ is

$$\mathsf{CI}_t = \left\{ \theta_0 \in \mathbb{R} : S_t^{\theta_0} < u_\alpha(\mathsf{V}_t^{\theta_0}) \right\}.$$

Suppose a coin has bias p. Let S_t be the number of heads observed up to time t.

Suppose a coin has bias p. Let S_t be the number of heads observed up to time t.

The process $S_t - tp$ is sub-Gaussian with variance process $V_t = t/4$.

Suppose a coin has bias p. Let S_t be the number of heads observed up to time t. The process $S_t - tp$ is sub-Gaussian with variance process $V_t = t/4$.

Then, for any $\lambda > 0$,

$$\mathbb{P}\left(S_t - tp \geq \underbrace{\frac{\log \alpha^{-1}}{\lambda} + \frac{\lambda}{2} \cdot \frac{t}{4}}_{\text{A linear boundary}} \text{ for some } t \in \mathbb{N}\right) \leq \alpha.$$

Suppose a coin has bias p. Let S_t be the number of heads observed up to time t. The process $S_t - tp$ is sub-Gaussian with variance process $V_t = t/4$.

Then, for any $\lambda > 0$,

$$\mathbb{P}\left(S_t - tp \ge \underbrace{\frac{\log \alpha^{-1}}{\lambda} + \frac{\lambda}{2} \cdot \frac{t}{4}}_{\text{A linear boundary}} \text{ for some } t \in \mathbb{N}\right) \le \alpha.$$

This yields the confidence sequence

$$\left|\frac{\mathsf{S}_t}{t} - p\right| < \frac{\log \alpha^{-1}}{\lambda t} + \frac{\lambda}{8}, \quad \text{for all } t, \text{ with probability at least } 1 - 2\alpha$$

Suppose X_i has a symmetric distribution conditional on X_1, \ldots, X_{i-1} .

Suppose X_i has a symmetric distribution conditional on X_1, \ldots, X_{i-1} . Then $S_t = \sum_{i=1}^t X_i$ is sub-Gaussian with variance process $V_t = \sum_{i=1}^t X_i^2$. [de la Peña 1999] Suppose X_i has a symmetric distribution conditional on X_1, \ldots, X_{i-1} . Then $S_t = \sum_{i=1}^t X_i$ is sub-Gaussian with variance process $V_t = \sum_{i=1}^t X_i^2$. [de la Peña 1999]

So

$$\mathbb{P}\left(\sum_{i=1}^{t} X_i \ge u_{\alpha}\left(\sum_{i=1}^{t} X_i^2\right) \text{ for some } t\right) \le \alpha.$$

Suppose X_i is a Hermitian, $d \times d$ random matrix with a conditionally symmetric distribution, $X_i \sim -X_i \mid X_1, \ldots, X_{i-1}$.

Suppose X_i is a Hermitian, $d \times d$ random matrix with a conditionally symmetric distribution, $X_i \sim -X_i \mid X_1, \ldots, X_{i-1}$.

Then $S_t = \gamma_{\max} \left(\sum_{i=1}^t X_i \right)$ is sub-Gaussian with variance process $V_t = \gamma_{\max} \left(\sum_{i=1}^t X_i^2 \right)$. [de la Peña 1999, Tropp 2011]

Suppose X_i is a Hermitian, $d \times d$ random matrix with a conditionally symmetric distribution, $X_i \sim -X_i \mid X_1, \dots, X_{i-1}$.

Then
$$S_t = \gamma_{\max} \left(\sum_{i=1}^t X_i \right)$$
 is sub-Gaussian with variance process $V_t = \gamma_{\max} \left(\sum_{i=1}^t X_i^2 \right)$. [de la Peña 1999, Tropp 2011]
So

$$\mathbb{P}\left(\gamma_{\max}\left(\sum_{i=1}^{t} X_{i}\right) \geq u_{\alpha,d}\left(\gamma_{\max}\left(\sum_{i=1}^{t} X_{i}^{2}\right)\right) \text{ for some } t\right) \leq \alpha.$$

• Peeking is a serious problem, and confidence sequences are a flexible solution.

- Peeking is a serious problem, and confidence sequences are a flexible solution.
- We derive useful confidence sequences in a variety of nonparametric settings, including for estimating average treatment effect and quantiles.

- Peeking is a serious problem, and confidence sequences are a flexible solution.
- We derive useful confidence sequences in a variety of nonparametric settings, including for estimating average treatment effect and quantiles.
- Our confidence sequences immediately improve best-arm identification algorithms and extend validity to nonparametric settings.

- Peeking is a serious problem, and confidence sequences are a flexible solution.
- We derive useful confidence sequences in a variety of nonparametric settings, including for estimating average treatment effect and quantiles.
- Our confidence sequences immediately improve best-arm identification algorithms and extend validity to nonparametric settings.
- Our underlying framework extends the Cramér-Chernoff method, unifying many existing results and yielding new confidence sequences in diverse settings.

Thank you!

- stevehoward@berkeley.edu
- Exponential line-crossing inequalities: https://arxiv.org/abs/1808.03204
- Uniform, nonparametric, non-asymptotic confidence sequences: https://arxiv.org/abs/1810.08240
- Sequential estimation of quantiles with applications to A/B-testing and best-arm identification: https://arxiv.org/abs/1906.09712
- Implementations of many uniform boundaries and confidence sequences: https://github.com/gostevehoward/confseq
- · Slides: stevehoward.org
Appendix

We require predictions $\hat{Y}_t(1)$ and $\hat{Y}_t(0)$ for $Y_t(1)$ and $Y_t(0)$.

We require predictions $\hat{Y}_t(1)$ and $\hat{Y}_t(0)$ for $Y_t(1)$ and $Y_t(0)$.

For each unit t, we construct an estimator X_t of the individual treatment effect $Y_t(1) - Y_t(0)$.

 X_t depends on our predictions as well as the observed treatment and outcome.

We require predictions $\hat{Y}_t(1)$ and $\hat{Y}_t(0)$ for $Y_t(1)$ and $Y_t(0)$.

For each unit t, we construct an estimator X_t of the individual treatment effect $Y_t(1) - Y_t(0)$.

 X_t depends on our predictions as well as the observed treatment and outcome.

Two key properties of X_t :

1. Unbiased: $\mathbb{E}X_t = Y_t(1) - Y_t(0)$

2. Variance of X_t depends on prediction errors $(Y_t(1) - \widehat{Y}_t(1))^2$ and $(Y_t(0) - \widehat{Y}_t(0))^2$.

We require predictions $\hat{Y}_t(1)$ and $\hat{Y}_t(0)$ for $Y_t(1)$ and $Y_t(0)$.

For each unit t, we construct an estimator X_t of the individual treatment effect $Y_t(1) - Y_t(0)$.

 X_t depends on our predictions as well as the observed treatment and outcome.

Two key properties of X_t :

1. Unbiased: $\mathbb{E}X_t = Y_t(1) - Y_t(0)$

2. Variance of X_t depends on prediction errors $(Y_t(1) - \widehat{Y}_t(1))^2$ and $(Y_t(0) - \widehat{Y}_t(0))^2$.

Let $S_t = \sum_{i=1}^t X_i$. Then S_t/t is unbiased for ATE_t.

$$\frac{S_t}{t} \pm \frac{1.96\sqrt{\sum_{i=1}^{t} (X_i - \bar{X}_t)^2}}{t}$$

$$\frac{S_t}{t} \pm \frac{1.96\sqrt{\sum_{i=1}^{t} (X_i - \bar{X}_t)^2}}{t}$$

Uniform, non-asymptotic confidence bounds

$$\frac{S_t}{t} \pm \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_i)^2\right)}{t} \quad \text{where } \widehat{X}_i = \widehat{Y}_i(1) - \widehat{Y}_i(0).$$

$$\frac{S_t}{t} \pm \frac{1.96\sqrt{\sum_{i=1}^{t} (X_i - \bar{X}_t)^2}}{t}$$

Uniform, non-asymptotic confidence bounds

$$\frac{S_t}{t} \pm \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_i)^2\right)}{t} \quad \text{where } \widehat{X}_i = \widehat{Y}_i(1) - \widehat{Y}_i(0)$$

- $\sum_{i=1}^{t} (X_i \widehat{X}_i)^2$ is an "online" estimate of Var(S_t).
- Estimation precision depends on prediction accuracy.

$$\frac{S_t}{t} \pm \frac{1.96\sqrt{\sum_{i=1}^{t} (X_i - \bar{X}_t)^2}}{t}$$

Uniform, non-asymptotic confidence bounds

$$\frac{S_t}{t} \pm \frac{u_{\alpha}\left(\sum_{i=1}^t (X_i - \widehat{X}_i)^2\right)}{t} \quad \text{where } \widehat{X}_i = \widehat{Y}_i(1) - \widehat{Y}_i(0)$$

- $\sum_{i=1}^{t} (X_i \widehat{X}_i)^2$ is an "online" estimate of Var(S_t).
- $\cdot\,$ Estimation precision depends on prediction accuracy.
- $u_{\alpha}(v) = \mathcal{O}(\sqrt{v \log v})$, so $u_{\alpha}(v)$ is like $z_{1-\alpha}\sqrt{v}$, but the "z-factor" grows over time (slowly).

The uniform boundary grows only slightly faster than $\mathcal{O}(\sqrt{n})$

Without some similar assumption, it is impossible to construct a confidence interval.

Without some similar assumption, it is impossible to construct a confidence interval.

The problem: one outlier can have arbitrarily large influence.

• Consider $Y_1(1) = t$, $Y_1(0) = 0$, and $Y_i(k) = 0$ for all k = 0, 1 and i = 2, ..., t.

Without some similar assumption, it is impossible to construct a confidence interval.

The problem: one outlier can have arbitrarily large influence.

• Consider $Y_1(1) = t$, $Y_1(0) = 0$, and $Y_i(k) = 0$ for all k = 0, 1 and i = 2, ..., t.

Asymptotic arguments often sweep this issue under the rug.

