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We design confidence sequences—sequences of confidence intervals which are valid uniformly over time—for
quantiles of any distribution over a complete, fully-ordered set, based on a stream of i.i.d. observations. We give
methods both for tracking a fixed quantile and for tracking all quantiles simultaneously. Specifically, we provide
explicit expressions with small constants for intervals whose widths shrink at the fastest possible

√
t−1 log log t rate,

along with a nonasymptotic concentration inequality for the empirical distribution function which holds uniformly
over time with the same rate. The latter strengthens Smirnov’s empirical process law of the iterated logarithm
and extends the Dvoretzky-Kiefer-Wolfowitz inequality to hold uniformly over time. We give a new algorithm
and sample complexity bound for selecting an arm with an approximately best quantile in a multi-armed bandit
framework. In simulations, our method needs fewer samples than existing methods by a factor of five to fifty.

Keywords: Quantile estimation; confidence sequences; empirical process; Dvoretzky-Kiefer-Wolfowitz
inequality; best-arm identification

1. Introduction

A fundamental problem in statistics is the estimation of the location of a distribution based on inde-
pendent and identically distributed samples. While the mean is the most common measure of location,
the median and other quantiles are important alternatives. Quantiles are more robust to outliers and
are well-defined for ordinal variables, and sample quantiles exhibit favorable concentration properties,
which allow for strong estimation guarantees with minimal assumptions. Beyond estimation, one may
choose to actively seek a distribution which maximizes a particular quantile, as in a multi-armed bandit
setup, in contrast to the usual setting of finding an arm with maximal mean. In such problems, we wish
to find an arm having an approximately best quantile with high probability, while minimizing the total
number of samples drawn.

In this paper, we consider the sequential estimation of quantiles and its application to quantile best-
arm identification. Specifically, given a stream of i.i.d. observations, we wish to form an estimate of
a population quantile, or of all population quantiles, and to continuously update this estimate as more
samples are observed to reflect our decreasing uncertainty. Our key tool is the confidence sequence: a
sequence of confidence intervals which are guaranteed to contain the desired quantile uniformly over
an unbounded time horizon, with the desired coverage probability. For example, if Q(p) denotes the
true quantile function and Q̂t (p) the sample quantile function after having observed t samples (see
Section 3 for precise definitions), then for any desired coverage level α ∈ (0,1), Theorem 1(a) yields
the following confidence sequence for the true median, using as confidence bounds a pair of sample
quantiles at each time t:
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P

(
∀t ∈ N : Q̂t (1/2 − ut ) ≤ Q(1/2) ≤ Q̂t (1/2 + ut )

)
≥ 1 − α,

where ut � 0.72
√

t−1[1.4 log log(2.04t) + log(9.97/α)]. (1)

Informally, with high probability, the (unknown) population median lies between (observed) sample
quantiles slightly above and below the sample median, where “slightly” is determined by a decreasing
sequence ut = O(

√
t−1 log log t), and moreover, this sequence of upper and lower bounds never fails

to contain the true median. In addition to confidence sequences for a fixed quantile, we also derive
families of confidence sequences which hold uniformly both over time and over all quantiles. As an
example, for any α ∈ (0,0.25), Corollary 2 yields

P

(
∀t ∈ N,p ∈ (0,1) : Q̂t (p − ut ) ≤ Q(p) ≤ Q̂t (p + ut )

)
≥ 1 − α,

where ut � 0.85
√

t−1[log log(et) + 0.8 log(1612/α)]. (2)

The above closed form for ut is one of many possibilities, but Corollary 2 offers better constants, and
permits any α ∈ (0,1), if one is willing to perform numerical root-finding. For example, with α = 0.05,
we can take ut � 0.85

√
t−1(log log(et) + 8.12) in (2).

Confidence sequences of the form (1) are critical for quantile best-arm algorithms, while those of the
form (2) are highly useful for proving corresponding sample complexity bounds. We demonstrate these
applications by proving a state-of-the-art sample complexity bound for a new, LUCB-style algorithm.
This algorithm outperforms existing algorithms by a large margin in simulation, while the correspond-
ing sample complexity bound matches the best-known rates and requires considerably more technical
work than analogous proofs for successive elimination algorithms previously considered.

For a fixed sample size, the celebrated Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Dvoretzky,
Kiefer and Wolfowitz, 1956, Massart, 1990) bounds the uniform-norm deviation of the empirical CDF
from the truth with high probability. Corollary 2 follows from Theorem 2, which gives an extension of
the DKW inequality that holds uniformly over time. From a theoretical point of view, Theorem 2 gives a
non-asymptotic strengthening of the empirical process law of the iterated logarithm (LIL) by Smirnov
(1944). From a practical point of view, as Figure 2 illustrates, our time-uniform DKW inequality of
Theorem 2 is only about a factor of about two wider in the radius of the high-probability bound,
relative to the fixed-sample DKW inequality. This factor grows at a slow

√
log log t rate, so holds over

a very long time horizon. Figure 1 illustrates our confidence sequences both for a fixed quantile and for
the entire CDF.

Our quantile confidence sequences provide strong guarantees under minimal assumptions while
granting the decision-maker a great deal of flexibility. We emphasize the following specific benefits
of our confidence sequences:

(P1) Non-asymptotic and distribution-free: our confidence sequences offer coverage guarantees
for all sample sizes in any i.i.d. sampling scenario, regardless of the underlying distribution on
any totally ordered space.

(P2) Unbounded sample size: our methods do not require a final sample size to be chosen ahead of
time. Nevertheless, they may be tuned for a planned sample size, but always permit additional
sampling.

(P3) Arbitrary stopping rules: we make no assumptions on the rule used to decide when to stop
collecting data and act on given inferences. A user may even perform inference in hindsight
based on a previously-seen sample size. That is, the “stopping rule” can be any random time
and does not need to be a formal stopping time.
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Figure 1. Left: solid lines show upper and lower 95%-confidence sequences using Theorem 1 for the 90%ile of a
Cauchy distribution based on one sequence of i.i.d. draws. Grey line shows the true quantile, which lies between
the bounds uniformly over all time t ∈ N with probability 0.95. Dotted line shows point estimates. Right: solid
lines show 95%-confidence bands for the CDF of a Cauchy distribution at three times, t = 100, 1,000, and 10,000,
based on one sequence of i.i.d. draws. True CDF, grey, lies between the upper and lower bounds uniformly over all
x ∈ R and t ∈ N with probability 0.95. Dotted line shows empirical CDF.

(P4) Asymptotically zero width: our confidence bounds for the p-quantile are based on p ±
O(t−1/2) sample quantiles, ignoring log factors. In this sense, our confidence intervals shrink
in width at nearly the same rate as pointwise confidence intervals (see supplement Section 8
(Howard and Ramdas, 2021) for a simple example of pointwise confidence intervals based on
the central limit theorem).

1.1. Related work

The pioneering work of Darling and Robbins (1967a) introduced the idea of a confidence sequence,
as far as we are aware, and gave a confidence sequence for the median. Their method exploits a stan-
dard connection between concentration of quantiles and concentration of the empirical CDF, as does
our work, and their method extends trivially to estimating any other fixed quantile. Their confidence
sequence was based on the iterated-logarithm, time-uniform bound derived in Darling and Robbins
(1967b), and so shrinks in width at the fastest possible

√
t−1 log log t rate, like our Theorem 1(a). For the

median, their constants are excellent, but the lack of dependence on which quantile is being estimated
leads to looseness for tail quantiles, as illustrated in Figure 2. Our results for fixed-quantile estima-
tion yield significantly tighter confidence sequences for tail quantiles (and are also slightly tighter for
the median). Schreuder, Brunel and Dalalyan (2020) give another iterated-logarithm-rate confidence
sequence for quantiles, a special case of their general method for M-estimators.

Our methods for deriving time-uniform, iterated-logarithm CDF and quantile bounds are closely re-
lated to the class of methods known as “chaining” in probability theory (Boucheron, Lugosi and Mas-
sart, 2013, Dudley, 1967, Giné and Nickl, 2016, Talagrand, 2005), and similar bounds can be derived
using existing chaining techniques. We emphasize our focus on practical constants; our Theorem 2,
for example, extends the fixed-sample DKW bound of Massart (1990) to hold uniformly over time
at a price of roughly doubling the bound width over many orders of magnitude of time (see Figure
S2 in the appendix). Our work is also related to the vast literature on extreme value theory, which
contains many results on concentration of extreme sample quantiles (Anderson, 1984, Dekkers and
de Haan, 1989, Drees, 1998, Drees, de Haan and Li, 2003), though not typically with our focus on
time-uniform estimation. Our results can be used to estimate any population quantile, but we place no
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Figure 2. Plot of upper confidence bound radii ut , normalized by
√

t to facilitate comparison. Each panel shows
estimation radius for a different quantile, p = 0.05, 0.5, and 0.95, respectively. All bounds correspond to two-sided
α = 0.05. Upper row (a) shows confidence sequences valid uniformly over both time and quantiles. Lower row (b)
shows confidence sequences valid uniformly over either time for a fixed quantile. In rightmost panels, lines start at
the sample size for which the upper confidence bound becomes nontrivial. See supplement Section 5 for details of
each bound shown.

particular emphasis on the behavior of extreme sample quantiles. If one were particularly interested in
extreme tail behavior, e.g., in the distributional properties of the sample maximum, then such refer-
ences would prove more useful. In addition, general distributional theory of order statistics (empirical
quantiles) is well established (Arnold, Balakrishnan and Nagaraja, 2008), and specific variance and
concentration bounds for order statistics are available (Boucheron and Thomas, 2012). Our methods
are rather different in that we always bound population quantiles using sample quantiles, an approach
which fits naturally into applications and which yields methods that apply universally without concern
for specifics of the underlying distribution. Finally, in contrast to our focus on sequential inference for
the CDF and quantiles, a line of work uses series expansions for improved point estimation of the CDF
and quantile functions; see Stephanou, Varughese and Macdonald (2017) and references therein.

Shorack and Wellner (1986) give an extensive survey of results for the empirical process (F̂t − F)∞
t=1

for uniform observations, and by extension, the empirical distribution function for any sequence of
i.i.d. observations. Of particular relevance is the LIL proved by Smirnov (1944), and the proof given by
Shorack and Wellner (1986), based on an improvement of a maximal inequality due to James (1975).
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This maximal inequality is the key to our sophisticated non-asymptotic empirical process iterated log-
arithm inequality, Theorem 2. The latter leads to new quantile confidence sequences that are uniform
over both quantiles and time which are significantly tighter than the earlier such bounds used for quan-
tile best-arm identification (Szörényi et al., 2015).

The problem of selecting an approximately best arm, as measured by the largest mean, was studied by
Even-Dar, Mannor and Mansour (2002) and Mannor and Tsitsiklis (2003/04), who gave an algorithm
and sample complexity upper and lower bounds within a logarithmic factor of each other. The best-
arm identification or pure exploration problem has received a great deal of attention since then; we
mention the influential work of Bubeck, Munos and Stoltz (2009) and the proposals of Jamieson et al.
(2014), Kaufmann, Cappé and Garivier (2016), and Zhao et al. (2016), whose methods included iterated-
logarithm confidence sequences for means.

The problem of seeking an arm with the largest median (or other quantile), rather than mean, was
first considered by Yu and Nikolova (2013), as far as we are aware. Szörényi et al. (2015) proposed the
(ε,δ)-PAC problem formulation that we use, and gave an algorithm with a sample complexity upper
bound mirroring that of Even-Dar, Mannor and Mansour, including the logarithmic factor. Szörényi
et al. include a confidence sequence valid over quantiles and time, derived via a union bound applied
to the DKW inequality (Dvoretzky, Kiefer and Wolfowitz, 1956, Massart, 1990), similar to the bound
used by Darling and Robbins (1968, Theorem 4). Szörényi et al. also analyzed a quantile-based regret-
minimization problem, recently studied by Torossian, Garivier and Picheny (2019) as well. David and
Shimkin (2016) extended the sample complexity of Szörényi et al. to include dependence on the quantile
being optimized, while Kalogerias et al. (2020) discuss the ε = 0 case and give careful consideration to
the gap definition appearing in the sample complexity bound. Our procedure is a variant of the LUCB
algorithm by Kalyanakrishnan et al. (2012), unlike previous quantile best-arm algorithms; our analysis
covers both the ε = 0 and ε > 0 cases; we improve the upper bounds of Szörényi et al. by replacing
the logarithmic factor by an iterated-logarithm one and removing unnecessary dependence on a unique
best arm’s gap; and we achieve considerably better performance than prior algorithms in simulations.

1.2. Paper outline

After an introduction to the conceptual ideas of the paper in Section 2, we present our confidence se-
quences for estimation of a fixed quantile in Section 3, while Section 4 gives a confidence sequence
for all quantiles simultaneously. Section 5 offers a graphical comparison of our bounds with each other
and with existing bounds from the literature, as well as advice for tuning bounds in practice. In Sec-
tion 6, we analyze a new algorithm for quantile ε-best-arm identification in a multi-armed bandit, with
a state-of-the-art sample complexity bound. We gather proofs in Section 7. Implementations are avail-
able online for all confidence sequences presented here (https://github.com/gostevehoward/confseq),
along with code to reproduce all plots and simulations (https://github.com/gostevehoward/quantilecs).

2. Warmup: Linear boundaries and quantile confidence sequences

Before stating our main results, we first walk through the derivation of a simple confidence sequence
for quantiles to illustrate techniques. In effect, we spell out the less-known duality between sequential
tests and confidence sequences (Howard et al., 2021), analogous to the well-known duality between
fixed-time hypothesis tests and confidence intervals.

Let (Xt )∞t=1 be a sequence of i.i.d., real-valued observations from an unknown distribution, which we
assume is continuous for this section only. For a given p ∈ (0,1), let q ∈ R be such that P(X1 ≤ q) = p.

https://github.com/gostevehoward/confseq
https://github.com/gostevehoward/quantilecs
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We wish to sequentially estimate this p-quantile, q, based on the observations (Xt ). At a high level, our
strategy is as follows:

1. We first imagine testing a specific hypothesis H0,x : q = x for some x ∈ R at a fixed sample size.
Using the aforementioned duality between tests and intervals, we could construct a fixed-sample
confidence interval for q consisting of all those values of x ∈ R for which we fail to reject H0,x .

2. To test H0,x for some fixed x, we observe that H0,x is true if and only if the random variables
(1Xt ≤x)∞t=1 are i.i.d. draws from a Bernoulli(p) distribution. Hence, if the number of samples were
fixed in advance, testing H0,x would be equivalent to a standard parametric test: we observe a set
of coin flips (1Xt ≤x), and the null hypothesis states that the bias of this coin is p. Inverting this
test, as mentioned in the previous point, yields a fixed-sample confidence interval for q.

3. Instead of a fixed-sample test, we could apply a sequential hypothesis test, one which can be
repeatedly conducted after each new sample Xt is observed, with the guarantee that, with the
desired, high probability, we will never reject H0,x when it is true. For example, appropriate vari-
ants of Wald’s Sequential Probability Ratio Test (SPRT) would suffice. Inverting such a sequen-
tial test, we upgrade our fixed-sample confidence interval to a confidence sequence, a sequence
of confidence intervals (CIt )∞t=1 which is guaranteed to contain q uniformly over time with high
probability: P(∀t : q ∈ CIt ) ≥ 1 − α.

To give a rigorous example, consider the random variables ξt � 1Xt ≤q for t ∈ N. We cannot observe
ξt since q is unknown, but we know (ξt ) is a sequence of i.i.d. Bernoulli(p) random variables. A
standard (suboptimal, but sufficient for our current exposition) result due to Hoeffding (1963) implies
that the centered random variable ξ1 − p is sub-Gaussian with variance parameter 1/4, i.e., Eeλ(ξ1−p) ≤
eλ

2/8 for any λ ∈ R. Writing L0 � 1 and, for t ∈ N, defining

Lt � exp

{
λ

t∑
i=1

(ξi − p) − λ2t
8

}
, (3)

we observe that (Lt )∞t=0 is a positive supermartingale for any λ ∈ R (Darling and Robbins, 1967a,
Howard et al., 2020). Then, for any α ∈ (0,1), Ville’s inequality (Ville, 1939) yields P(∃t ≥ 1 : Lt ≥
1/α) ≤ α, or equivalently,

P

(
∃t ≥ 1 :

t∑
i=1

ξi ≥ tp +
logα−1

λ
+
λt
8

)
≤ α. (4)

The sequence
(

logα−1

λ + λt
8

)∞
t=1

gives a boundary, linear in t, which the centered process (
∑t

i=1(ξi −
p))∞

t=1 is unlikely to ever cross. For λ > 0, this bounds the upper deviations of the partial sums(∑t
i=1 ξi

)∞
t=1 above their expectations, while for λ < 0, this bounds the lower deviations. Thus by simple

rearrangement, and writing

ut �
logα−1

λt
+
λ

8
,

we infer that t(p − ut ) <
∑t

i=1 ξi < t(p + ut ) uniformly over all t ∈ N with probability at least 1 − α.
Observe that

∑t
i=1 ξi equals | {i ∈ [t] : Xi ≤ q}| , the number of observations up to time t which lie below

q. So if
∑t

i=1 ξi < t(p + ut ), then we must have q < X t
( 	t(p+ut )
), where X t

(k) is the k th order statistic of
X1, . . . ,Xt . Likewise,

∑t
i=1 ξi > t(p − ut ) implies q > X t

( �t(p−ut )�). In other words, with probability at
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least 1 − α,

q ∈
(
X t
( �t(p−ut )�),X

t
( 	t(p+ut )
)

)
simultaneously for all t ∈ N, (5)

yielding a confidence sequence for the p-quantile, q. The main drawback of this confidence sequence
is that ut does not decrease to zero as t ↑ ∞, so that we do not, in general, expect the confidence
sequence to approach zero width as our sample size grows without bound. In other words, the precision
of this estimation strategy is unnecessarily limited. The confidence sequences of Section 3 remove this
restriction by replacing the O(t) boundary of (4) with a curved boundary growing at the rate O(

√
t log t)

or O(
√

t log log t).

3. Confidence sequences for a fixed quantile

We now state our general problem formulation, which removes the assumption that observations are
real-valued or from a continuous distribution. Let (Xi)∞i=1 be a sequence of i.i.d. observations taking
values in some complete, totally-ordered set (X,≤). We shall also make use of the corresponding re-
lations ≥, < and > on X. Write F(x) � P(X1 ≤ x) for the cumulative distribution function (CDF),
F−(x) � P(X1 < x), and define the empirical versions of these functions F̂t (x) � t−1 ∑t

i=1 1Xi ≤x and
F̂−
t (x)� t−1 ∑t

i=1 1Xi<x . Define the (standard) upper quantile function as

Q(p)� sup{x ∈ X : F(x) ≤ p}

and the lower quantile function

Q−(p)� sup{x ∈ X : F(x) < p}.

Finally, define the corresponding (plug-in) upper and lower empirical quantile functions Q̂t (p) �
sup{x ∈ X : F̂t (x) ≤ p} and Q̂−

t (p)� sup{x ∈ X : F̂t (x) < p}. We extend the empirical quantile func-
tions to hold over domain p ∈ R by taking the convention that the supremum of the empty set is infX,
so that Q̂t (p) = Q̂−

t (p) = infX for p < 0 while Q̂t (p) = Q̂−
t (p) = supX for p > 1.

Fixing any p ∈ (0,1) and α ∈ (0,1), our goal in this section is to give a (1 − α)-confidence sequence
for the true quantiles Q−(p),Q(p) in terms of sample quantiles. In particular, we propose positive,
real-valued sequences lt (p) and ut (p) for t ∈ N, each decreasing to zero as t ↑∞, satisfying

P

(
∃t ∈ N : Q−(p) < Q̂t (p − lt (p)) or Q(p) > Q̂−

t (p + ut (p))
)
≤ α. (6)

Stated differently, for any q ∈ [Q−(p),Q(p)], we would have

P

(
∀t ∈ N : q ∈ [Q̂t (p − lt (p)),Q̂−

t (p + ut (p))]
)
≥ 1 − α. (7)

The sequences (lt (p),ut (p))∞t=1 characterize the lower and upper radii of the confidence intervals in
“p-space”, before passing through the sample quantile functions Q̂t and Q̂−

t to obtain final confidence
bounds in X. In what follows, we characterize the asymptotic rates of our confidence interval widths in
terms of these “p-space” widths.

Before stating our confidence sequences, we observe the following lower bound, a straightforward
consequence of the law of the iterated logarithm.
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Proposition 1 (Quantile confidence sequence lower bound). Consider any p ∈ (0,1) such that
F(Q(p)) = p. If

lim sup
t→∞

ut√
2p(1 − p)t−1 log log t

< 1, (8)

then P(∃t ∈ N : Q(p) ≥ Q̂t (p + ut )) = 1.

This result is proved in supplement Section 4.2. Note that the condition F(Q(p)) = p holds for all
p ∈ (0,1) when F is continuous, and holds for at least some p otherwise; more technical effort can
be expended to remove this restriction, but we do not do this since the takeaway message is already
transparent.

We now propose two confidence sequences. The first has radii given by the function

ft (p)� 1.5
√

p(1 − p)�(t) + 0.8�(t) where �(t)� 1.4 log log(2.1t) + log(10/α)
t

. (9)

This method has the advantage of a closed-form expression with small constants, and evidently ft (p) ∼√
3.15p(1 − p)t−1 log log t as t →∞, matching the lower bound given in Proposition 1 up to the leading

constant. Section 7.1 gives a more general version of ft (p) involving several hyperparameters, showing
that the leading constant may in fact be brought arbitrarily close to the optimal value of two appearing
in Proposition 1, though doing so tends to yield inferior performance in practice. The derivation of ft (p)
relies on a method that goes by different names — chaining, “peeling”, or “stitching” — in which we
divide time into geometrically-spaced epochs [ηk,ηk+1), and bound the miscoverage event within the
k th epoch by a probability which decays like k−s , for hyperparameters η, s > 1 described in Section 7.1.

Our second method uses a function f̃t (p) which requires numerical root-finding to compute exactly,
but has the asymptotic expansion

f̃t (p) =

√√√
p(1 − p)

t

[
log

(
p(1 − p)t
C2
p,rα

2

)
+ o(1)

]
where Cp,r �

√
2πp(1 − p) fβ

(
p;

r
1 − p

,
r
p

)
, (10)

as t →∞; here fβ(x; a,b) denotes the density of the Beta distribution with parameters a,b, and r > 0
is a tuning parameter. The function f̃t (p) is described fully in Section 7.1, while we discuss the choice
of the tuning parameter r in Section 5 and derive the asymptotic expansion (10) in supplement Section
4.1. We note here that as p approaches zero or one, the constant Cp,r approaches a constant depending
only on r , so it does not contribute to dependence on p for tail quantiles. Compared to ft (p), f̃t (p)
yields confidence interval widths with a slightly worse asymptotic rate of O(

√
t−1 log t). Even though

neither of our methods uniformly dominates the other, the worse rate is usually preferable in practice,
as we explore in Section 5. Informally, the reason is that any method with asymptotically optimal rates
must be looser at practically relevant sample sizes in order to gain this later tightness, since the overall
probability of error of both envelopes can be made arbitrarily close to α. The following result shows
that both the above methods yield valid confidence sequences for any fixed p.

Theorem 1 (Confidence sequence for a fixed quantile). Taking ft from (9), for any p ∈ (0,1) and any
α ∈ (0,1), we have

P

(
∃t ∈ N : Q−(p) < Q̂t (p − ft (1 − p)) or Q(p) > Q̂−

t (p + ft (p))
)
≤ α. (11)

The same holds with f̃t from (45) (asymptotically, (10)) in place of ft .
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The proof, given in Section 7.1, involves constructing a martingale having bounded increments as a
function of the true quantiles Q−(p) and Q(p). Then uniform concentration arguments show that ft (p)
and f̃t (p) bound the deviations of this martingale from zero, uniformly over time, with high probability.
We deduce plausible values for the true quantiles from this high-probability restriction on the values of
the martingale.

We could derive a simpler boundary from a sub-Gaussian bound, like that presented in the previous
section. For example, one can replace ft (p) or f̃t (p) with√

t + r
t2 log

(
t + r
α2r

)
(12)

for any r > 0 (e.g., Howard et al., 2021, eq. 3.7). This bound lacks the appropriate dependence
on

√
p(1 − p) indicated in Proposition 1. Our method instead uses “sub-gamma” (for ft ) and “sub-

Bernoulli” (for f̃t ) bounds (Howard et al., 2020) to achieve the correct dependence. The presented
bounds are never looser than those obtained by a sub-Gaussian argument, and will be much tighter
when p is close to zero or one, as we later illustrate in Figure 2(b).

Having presented our confidence sequences for a fixed quantile, we next present bounds that are
uniform over both quantiles and time.

4. Confidence sequences for all quantiles simultaneously

Theorem 1 is useful when the experimenter has decided ahead of time to focus attention on a particular
quantile, or perhaps a small number of quantiles (via a union bound). In some cases, however, it may
be preferable to estimate all quantiles simultaneously, so that the experimenter may adaptively choose
which quantiles to estimate after seeing the data. Equivalently, one may wish to bound the deviations
of all sample quantiles uniformly over time, as in our proof of Theorem 3 in Section 6. Recall that for
a fixed time t and α ∈ (0,1), the DKW inequality (Dvoretzky, Kiefer and Wolfowitz, 1956, Massart,
1990) states

P

(���F̂t − F
���
∞
>

√
log(2/α)

2t

)
≤ α. (13)

In tandem with the implications in (34) of Section 7, the DKW inequality yields

P

(
∃p ∈ (0,1) : Q−(p) < Q̂−

t (p − lt ) or Q(p) > Q̂t (p + ut )
)
≤ α, (14)

where lt = ut =
√

logα−1/(2t). In this section, we derive a (1 − α)-confidence sequence which is valid
uniformly over both quantiles and time, based on a function sequence lt (p),ut (p) decreasing to zero
pointwise as t ↑∞:

P

(
∃t ∈ N,p ∈ (0,1) : Q−(p) < Q̂−

t (p − lt (p)) or Q(p) > Q̂t (p + ut (p))
)
≤ α. (15)

Our method is based on the following non-asymptotic iterated logarithm inequality for the empirical
process (F̂t − F)∞

t=1, which may be of independent interest.
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Theorem 2 (Empirical process finite LIL bound). For any initial time m ≥ 1 and C ≥ 7, we have

P

(
∃t ≥ m :

���F̂t − F
���
∞
> 0.85

√
log log(et/m) +C

t

)
≤ 1612e−1.25C . (16)

Furthermore, for any A > 1/
√

2, C > 0, and m ≥ 1, we have

P

(���F̂t − F
���
∞
> A

√
log log(et/m) +C

t
infinitely often

)
= 0. (17)

We give a more detailed result and proof in Section 7.2, based on a maximal inequality due to
James (1975) and Shorack and Wellner (1986) combined with a union bound over exponentially-spaced
epochs. Taking A arbitrarily close to 1/

√
2 immediately implies the following asymptotic upper LIL.

Corollary 1 (Smirnov, 1944). For any (possibly discontinuous) F, we have

lim sup
t→∞

‖F̂t − F‖∞√
(1/2)t−1 log log t

≤ 1 almost surely. (18)

A comprehensive overview of results for the empirical process
√

t(F̂t − F) can be found in Shorack
and Wellner (1986). We mention in particular the law of the iterated logarithm derived by Smirnov
(1944) (cf. Shorack and Wellner, 1986, page 12, equation (11)), which says that for continuous F,
the bound (18) holds with equality, seeing as the lower bound on the lim sup follows directly from
the original LIL (Khintchine, 1924) applied to F̂t (Q(1/2)), an average of i.i.d. Bernoulli(1/2) random
variables. Theorem 2 strengthens Smirnov’s asymptotic upper bound to one holding uniformly over
time, without costing constant factors in the resulting asymptotic implication.

The following confidence sequence follows from Theorem 2, as detailed in supplement Section 4.4.

Corollary 2 (Quantile-uniform confidence sequence I). For any initial time m ≥ 1 and C ≥ 7, letting
gt � 0.85

√
t−1(log log(et/m) +C), we have

P

(
∃t ≥ m,p ∈ (0,1) : Q−(p) < Q̂−

t (p − gt ) or Q(p) > Q̂t (p + gt )
)
≤ 1612e−1.25C . (19)

For example, take m = 1 and C = 8.3, so that gt = 0.85
√

t−1(log log(et) + 8.3) and

P

(
∃t ≥ 1,p ∈ (0,1) : Q−(p) < Q̂−

t (p − gt ) or Q(p) > Q̂t (p + gt )
)
≤ 0.05. (20)

Figure 2(a) shows that Corollary 2 yields a other published methods based on the fixed-time DKW
inequality combined with a more naive union bound over time.

Note that gt does not depend on p, like the DKW-based fixed-time inequality (14), but this is not ideal
for tail quantiles. We describe an alternative “double stitching” method in Theorem S1 of supplement
Section 2 which does include such dependence, and yields improved performance for p near zero or
one. We demonstrate this performance in Figure 2 of the following section, graphically comparing all
of our bounds.
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5. Graphical comparison of bounds

Figure 2 compares our four quantile confidence sequences with a variety of alternatives from the litera-
ture. In each case, we show the upper confidence bound radius ut which satisfies Q̂t (p+ut ) ≥ Q(p) with
high probability, uniformly over t, p, or both. Figure S2 in supplement Section 5 includes an additional
plot with all bounds together, along with details on all bounds displayed.

Among bounds holding uniformly over both time and quantiles, Corollary 2 and Theorem S1 yield
the tightest bounds outside of a brief time window near the start. The bound of Theorem S1 gives
ut growing at an O(

√
t−1 log t) rate for all p � 1/2, which is worse than that of Corollary 2, but the

superior constants of Theorem S1 and its dependence on p give it the advantage in the plotted range.
Szörényi et al. (2015) also give a bound which grows as O(

√
t−1 log t), but with worse constants due to

the application of a union bound over individual time steps t ∈ N. A similar technique was employed by
Darling and Robbins (1968, Theorem 4), but using worse constants in the DKW bound, as their work
preceded Massart (1990). Finally, Corollary 2 gives an O(

√
t−1 log log t) bound which is especially

useful for theoretical work, as in our proof of Theorem 3.
Among bounds holding uniformly over time for a fixed quantile, the beta-binomial confidence se-

quence of Theorem 1(b) performs best over the plotted range, slightly outperforming its iterated-
logarithm counterpart from Theorem 1(a). It is evident, though, that the iterated-logarithm bound will
become tighter for large enough t, thanks to its smaller asymptotic rate. Darling and Robbins (1967a,
Section 2) give a similar bound based on a sub-Gaussian uniform boundary, which is only slightly
worse than Theorem 1(a) for the median, but substantially worse for p near zero and one.

Figure 2 starts at t = 32 and all bounds have been tuned to optimize for, or start at, t = 32, in order to
ensure a fair comparison. For Theorem 1(a), Corollary 2, and Theorem S1, we simply set m = 32. For
Theorem 1(b), we suggest setting r as follows to optimize for time t =m:

r
p(1 − p) =

m
−W−1(−α2/e) − 1

− 1 ≈ m
2 log(α−1) + log log(eα−2)

− 1, (21)

where W−1(x) is the lower branch of the Lambert W function, the most negative real-valued solution in
z to zez = x, and the second expression uses the asymptotic expansion of W−1 near the origin (Corless
et al., 1996). See Howard et al. (2021, Proposition 3, Proposition 7, and discussion therein) for details
on this choice. Figure 3 illustrates the effect of this choice. The confidence radius ut gets loose very
quickly for values of t lower than about m/2, but grows quite slowly for values of t > m. For this reason,
we suggest setting m around the smallest sample size at which inferences are desired.

Figure 3. Plot of upper confidence bound radii ut , normalized by
√

t to facilitate comparison, for the confidence
sequence of Theorem 1(b) optimized for three different times m = 100, 1,000, and 10,000, according to (21).
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6. Quantile ε-best-arm identification

As an application of our quantile confidence sequences, we present and analyze a novel algorithm for
identifying an arm with an approximately optimal quantile in a multi-armed bandit setting. Our problem
setup matches that of Szörényi et al. (2015), a slight modification of the standard stochastic multi-
armed bandit setting. We assume K arms are available, numbered k = 1, . . . ,K , each corresponding to
a distribution Fk over the sample space X. At each round, the algorithm chooses any arm k to pull,
receiving an independent sample from the distribution Fk . Write Qk for the upper quantile function on
arm k, Qk(p)� sup{x ∈ X : Fk(x) ≤ p}, and Q−

k
for the lower quantile function. Fixing some π ∈ (0,1),

the goal is to stop as soon as possible and, with probability at least 1 − δ, select an ε-optimal arm
according to the following definition:

Definition 1. For ε ∈ [0,1 − π), we say arm k is ε-optimal if

Q−
k (π + ε) ≥ max

j∈[K]
Q−

j (π − ε). (22)

Denote the set of ε-optimal arms by

Aε �
{

k ∈ [K] : Q−
k (π + ε) ≥ max

j∈[K]
Q−

j (π − ε)
}
.

Kalyanakrishnan et al. (2012) introduced the LUCB algorithm for highest mean identification, for
which Jamieson and Nowak (2014) gave a simplified analysis in the ε = 0 case. Both are key inspirations
for our QLUCB (Quantile LUCB) algorithm and following sample complexity analysis. Despite being
conceptually similar, our analysis faces significantly harder technical hurdles due to the nonlinearity
and nonsmoothness of quantiles compared to the (sample and population) mean.

QLUCB proceeds in rounds indexed by t. At the start of round t, Nk ,t denotes the number of obser-
vations from arm k. Write Xk ,i for the ith observation from arm k, and let Q̂k ,t (p) denote the upper
sample quantile function for arm k at round t,

F̂k ,t (x)� N−1
k ,t

Nk ,t∑
i=1

1Xk ,i ≤x, Q̂k ,t (p)� sup
{

x ∈ X : F̂k ,t (x) ≤ p
}
, (23)

with an analogous definition of Q̂−
k ,t

. QLUCB requires a sequence (ln(p),un(p)) which yields fixed-
quantile confidence sequences, as in (6). Our analysis is based on confidence sequences given by (9),
by using α ≡ 2δ/K; the factor of two gives us one-sided instead of two-sided coverage at level δ/K ,
which is all that is needed. Let

ft (p) = 1.5
√

p(1 − p)�(t) + 0.8�(t), where �(t) = 1.4 log log(2.1t) + log(5K/δ)
t

, (24)

similar to (9), and let lt (p)� ft (1 − p) and ut (p)� ft (p). We write Lπ+ε
k ,t

and Uπ−ε
k ,t

for the lower and
upper confidence sequences on Qk(π + ε) and Qk(π − ε), respectively:

Lπ+ε
k ,t � Q̂k ,t

(
π + ε − lNk ,t

(π + ε)
)
, (25)

Uπ−ε
k ,t � Q̂−

k ,t

(
π − ε + uNk ,t

(π − ε)
)
. (26)



1716 S.R. Howard and A. Ramdas

Figure 4. The QLUCB algorithm samples an arm with highest LCB (time-uniform lower confidence bound) for
the (π + ε)-quantile (called ht ) and the arm(s) with highest UCB (time-uniform upper confidence bound) for the
π-quantile excluding the former (called Lt ), as long as the aforementioned LCB and UCB overlap.

QLUCB is described in Figure 4. Its sample complexity is determined by the following quantities,
which capture how difficult the problem is based on the sub-optimality of the π-quantiles of each arm:

Δk �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup

{
Δ ∈ [0, π ∧ (1 − π)] : Q−

k (π + Δ) ≤ max
j∈[K]

Q−
j (π − Δ)

}
, |Aε | > 1 or k �Aε ,

sup
{
Δ ∈ [0, π] : Q−

k (π − Δ) > max
j�k

Q−
j (π + Δj)

}
, Aε = {k}.

(27)

To understand (27), it is helpful to consider three cases in turn:

• Consider first a suboptimal arm k � Aε . Then Δk is given by the first case and captures (in-
formally) how much worse arm k is than some better arm. When arm k is sufficiently sampled
relative to Δk , then with high probabiltiy, the upper confidence bound on Q−

k
(π − ε) will be given

by a sample quantile which lies below Q−
k
(π + Δk), and by the gap definition, this will be smaller

than the lower confidence bound on Q−
j (π + ε) for some other sufficiently-sampled arm j. Thus

we will be confident that Q−
j (π + ε) ≥ Q−

k
(π − ε), a necessary step to conclude that j ∈ Aε .

• Suppose there is a unique optimal arm, Aε = {k�}. Then Δk� is given by the second case and
captures (again informally) how much better arm k� is than some “best” suboptimal arm. When
arm k� is sufficiently sampled relative to Δk� , then with high probability, the lower confidence
bound on Q−

k�
(π + ε) will be given by a sample quantile which lies above Q−

k�
(π − Δk�), and by

the gap definition, this will be larger than upper confidence bound on Q−
j (π − ε) for any other

(suboptimal) sufficiently-sampled arm j. So when all arms are sufficiently sampled, we will be
able to conclude that Q−

k�
(π + ε) ≥ Q−

j (π − ε) for all suboptimal arms j � k�.
• Suppose there are multiple optimal arms, |Aε | > 1. Then Δk is given by the first case and must be

no larger than ε . Because the gap only appears as ε ∨Δk in our sample complexity bound, the gap
is irrelevant in this case. Informally, we must sample both arms sufficiently that we can determine
they are “within ε of each other”, regardless of the actual distance between their quantile functions.

Below, Theorem 3 bounds the sample complexity of QLUCB and shows that it successfully selects
an ε-optimal arm, both with high probability.

Theorem 3. For any π ∈ (0,1), ε ∈ [0, π ∧ (1 − π)), and δ ∈ (0,1), QLUCB stops with probability one,
and chooses an ε-optimal arm with probability at least 1 − δ. Furthermore, with probability at least
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1 − 3δ, the total number of samples T taken by QLUCB satisfies

T = O
(

K∑
k=1

(ε ∨ Δk)−2 log
(

K |log (ε ∨ Δk)|
δ

) )
. (28)

A recent preprint by Kalogerias et al. (2020, Theorem 8) gave a lower bound for the expected sample
complexiy when ε = 0 of the form O(Δ−2 log δ−1), where Δ is the minimum gap among suboptimal
arms. Our bound matches the dependence on Δ up to a doubly-logarithmic factor, and includes an
extra factor of log K . We are not aware of a better upper or lower bound, thus removing the (small)
log K gap remains open. David and Shimkin (2016, Theorem 1) give a lower bound when ε > 0 of the
form O(

∑
k(ε ∨ Δ̃k)−2 log δ−1) using a slightly different gap definition Δ̃k . Our bound holds at ε = 0

in addition to ε > 0. Our QLUCB algorithm performs considerably better than existing algorithms in
our experiments, including the correct scaling with π, and we hope that will motivate others to work
towards fully matching upper and lower bounds.

Theorem 3 is proved in Section 7.3. In brief, the algorithm can only stop with a sub-optimal arm if
one of the confidence sequences Lπ+ε

k ,t
or Uπ−ε

k ,t
fails to correctly cover its target quantile, and Theorem 1

bounds the probability of such an error. Furthermore, Theorem 2 ensures that the confidence bounds
converge towards their target quantiles at an O(

√
t−1 log log t) rate, with high probability, so that the

algorithm must stop after all arms have been sufficiently sampled, and the allocation strategy given in
the algorithm ensures we achieve sufficient sampling with the desired sample complexity. While our
proof is inspired by Kalyanakrishnan et al. (2012) and Jamieson and Nowak (2014) but significantly
extends them. The fact that quantile confidence bounds are determined by the random sample quantile
function, rather than simply as deterministic offsets from the sample mean, introduces new difficulties
which require novel techniques to overcome.

As an alternative to (24), one may use a one-sided variant of f̃t from (45) (Howard et al., 2020,
Proposition 7). As seen below, this alternative performs well in practice, though the rate of the sample
complexity bound suffers slightly, replacing the log|log(ε ∨ Δk )| term with |log(ε ∨ Δk )|.

Figure 5 shows mean sample size from simulations of the quantile ε-best-arm identification problem,
for variants of QLUCB as well as the QPAC algorithm of Szörényi et al. (2015) and the Doubled Max-
Q algorithm of David and Shimkin (2016). In all cases, we have K = 10 arms and set ε = 0.025, while
π ranges between 0.05 and 0.95. In the left panel, nine arms have a uniform distribution on [0,1],
while one arm is uniform on [2ε,1 + 2ε]. In the middle panel, nine arms have Cauchy distributions
with location zero and unit scale, while one arm has location 2(Q(π + ε) − Q(π)), where Q(·) is the
Cauchy quantile function. This choice ensures that the one exceptional arm is the only ε-optimal arm.
In the right panel, nine arms have N(0,1) distributions, while one arm has a N(0,22) distribution. In
this case, the exceptional arm is the only ε-optimal arm for π larger than approximately 0.53, while it is
the only non-ε-optimal arm for π smaller than approximately 0.45. Between these values, all ten arms
are ε-optimal.

The results show that QLUCB provides a substantial improvement on QPAC and Doubled Max-Q,
reducing mean sample size by a factor of at least five among the cases considered, and often much
more, when using the one-sided beta-binomial confidence sequence. As Figure S3 in supplement Sec-
tion 7 shows, most of the improvement appears to be due to the tighter confidence sequence given
by Theorem 1, although the QLUCB sampling procedure also gives a noticeable improvement. The
stitched confidence sequence in QLUCB performs similarly to the beta-binomial one, staying within a
factor of three across all scenarios and usually within a factor of 1.5.
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Figure 5. Average sample size for various quantile best-arm identification algorithms based on 64 simulation runs,
with ε = 0.025 and π = 0.05,0.1,0.2, . . . ,0.8,0.9,0.95. Left panel shows results for arms with uniform distributions
on intervals of length one; middle panel shows arms with Cauchy distributions having unit scale; and right panel
shows arms with standard normal distributions except for one, which has a standard deviation of two instead of
one. In this last case, the exceptional arm is best for quantiles above 0.53, while for quantiles below 0.45, the other
arms are all ε-optimal. Plot includes Algorithm 2 of David and Shimkin (2016), Algorithm 1 of Szörényi et al.
(2015), and our QLUCB algorithm based on two choices of confidence sequence: the stitched confidence sequence
(24) based on Theorem 1(a) and a one-sided variant of the beta-binomial confidence sequence, Theorem 1(b).

7. Proofs

We make use of some results from Howard et al. (2020, 2021). We begin with the definitions of sub-
Bernoulli, sub-gamma, and sub-Gaussian processes and uniform boundaries:

Definition 2 (Sub-ψ condition). Let (St )∞t=0,(Vt )
∞
t=0 be real-valued processes adapted to an underlying

filtration (Ft )∞t=0 with S0 =V0 = 0 and Vt ≥ 0 for all t. For a function ψ : [0,λmax) → R, we say (St ) is
sub-ψ with variance process (Vt ) if, for each λ ∈ [0,λmax), there exists a supermartingale (Lt (λ))∞t=0
w.r.t. (Ft ) such that EL0(λ) ≤ 1 and

exp {λSt − ψ(λ)Vt } ≤ Lt (λ) a.s. for all t . (29)

Definition 3. Given ψ : [0,λmax) → R and l0 ≥ 1, a function u : R→ R is called a sub-ψ uniform
boundary with crossing probability α if

P(∃t ≥ 1 : St ≥ u(Vt )) ≤ α (30)

whenever (St ) is sub-ψ with variance process Vt .

Definition 4. We use the following ψ functions in what follows.

1. A sub-Bernoulli process or boundary is sub-ψ with

ψB,g,h(λ)�
1
gh

log
(
gehλ + he−gλ

g + h

)
(31)

on 0 ≤ λ <∞ for some parameters g,h > 0.
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2. A sub-Gaussian process or boundary is sub-ψ with

ψN (λ)� λ2/2 (32)

on 0 ≤ λ <∞.
3. A sub-gamma process or boundary is sub-ψ with

ψG,c(λ)� λ2/(2(1 − cλ)) (33)

on 0 ≤ λ < 1/(c ∨ 0) (taking 1/0 =∞) for some scale parameter c ∈ R.

The following facts will aid intuition for the true and empirical quantile functions:

• Q(p) and Q̂t (p) are right-continuous, while Q−(p) and Q̂−
t (p) are left-continuous.

• Q̂t (p) is the �tp� + 1 order statistic of X1, . . . ,Xt , and Q̂−
t (p) is the 	tp
 order statistic.

• Q−(p) ≤ Q(p), and Q−(p) =Q(p) unless the p-quantile is ambiguous, that is, F(x) = F(x′) = p for
some x � x′.

• Q̂−
t (p) ≤ Q̂t (p), and Q̂−

t (p) = Q̂t (p) for all p � {1/t,2/t, . . . ,(t − 1)/t}.
• Q− is sometimes denoted F−1 (e.g., Shorack and Wellner, 1986, p. 3, equation (13)). Our notation

seems to improve clarity in the case of ambiguous quantiles.

The functions Q̂−
t and Q̂t act as “inverses” for F̂t and F̂−

t in the following sense: for any x ∈ X and
any p ∈ R, we have

F̂t (x) ≥ p ⇔ x ≥ Q̂−
t (p), F̂t (x) ≤ p ⇒ x ≤ Q̂t (p), (34)

F̂t (x) > p ⇒ x ≥ Q̂t (p), and F̂−
t (x) < p ⇒ x ≤ Q̂−

t (p). (35)

Our strategy in the proof of Theorem 1 will be to construct a martingale (St (p))∞t=1 which almost
surely satisfies

F̂−
t (Q(p)) ≤ p + St (p)/t ≤ F̂t (Q−(p)) (36)

for all t ∈ N. Applying a time-uniform concentration inequality to bound the deviations of (St (p)), we
obtain a time-uniform lower bound F̂t (Q−(p)) > p− lt (p) and upper bound F̂−

t (Q(p)) < p+ ut (p), both
of which hold with high probability. We then invoke the implications in (35) to obtain a confidence
sequence for Q−(p),Q(p) of the form (6).

The martingale (St (p)) is defined as follows. Let

π(p)�
⎧⎪⎪⎨⎪⎪⎩

0, F(Q(p)) = F−(Q(p)),
p − F−(Q(p))

F(Q(p)) − F−(Q(p)) , F(Q(p)) > F−(Q(p)),
(37)

noting that π(p) ∈ [0,1] since F−(Q(p)) ≤ p ≤ F(Q(p)). Now define S0(p) = 0 and

St (p)�
t∑

i=1

[
1Xi<Q(p) + π(p)1Xi=Q(p) − p

]
(38)

for t ∈ N. When F(Q(p)) = F−(Q(p)), so that P(X1 = Q(p)) = 0, we have F̂−
t (Q(p)) = p + St (p)/t =

F̂t (Q(p)) for all t ∈ N a.s. When F(Q(p)) > F−(Q(p)), we are still assured F̂−
t (Q(p)) ≤ p + St (p)/t ≤

F̂t (Q(p)) for all t ∈ N, as desired. In either case, the increments ΔSt (p) � St (p) − St−1(p) are i.i.d.,
mean-zero, and bounded in [−p,1 − p] for all t ∈ N. This key fact allows us to bound the deviations of
St (p) using time-uniform concentration inequalities for Bernoulli random walks.
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7.1. Proof of Theorem 1

As defined in (38), the i.i.d. increments of the process (St (p))∞t=1,

St (p) − St−1(p) = 1Xi<Q(p) + π(p)1Xi=Q(p) − p, (39)

are mean-zero and bounded in [−p,1−p]. Fact 1(b) and Lemma 2 of Howard et al. (2020) verify that the
process (St (p)) is a sub-Bernoulli process (31) with range parameters g = p,h = 1 − p. Then, defining
the intrinsic variance process Vt � p(1 − p)t and

ψ(λ)� 1
p(1 − p) log

(
pe(1−p)λ + (1 − p)e−pλ

)
, (40)

it is straightforward to verify that the process (exp {λSt (p) − ψ(λ)Vt })∞t=1 is a supermartingale for all
λ ≥ 0. We now construct time-uniform bounds for the process (St (p)) based on the above property:

• Using the fact that a sub-Bernoulli process with range parameters g = p and h = 1 − p is also
sub-gamma with scale c = (1 − 2p)/3, the sequence ft (p) is based on the “polynomial stitched
boundary” (Howard et al., 2021, Proposition 1, equation 6, and Theorem 1). That result allows us
to fix any η > 1, s > 1, which control the shape of the confidence radius over time, and m ≥ 1, the
time at which the confidence sequence starts to be tight, and obtain ft (p) = Sp(t ∨ m)/t with

Sp(t)�
√

k2
1 p(1 − p)t�(t) + k2

2c2
p�

2(t) + cpk2�(t),

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�(t)� s log log
( ηt

m

)
+ log

(
2ζ(s)
α logs η

)
k1 � (η1/4 + η−1/4)/

√
2

k2 � (√η + 1)/2
cp � (1 − 2p)/3.

(41)

The special case given in eq. (9) follows from the choices η = 2.04, s = 1.4, and m = 1. Then

P(∃t ∈ N : St (p) ≥ t ft (p)) ≤ α/2. (42)

If we replace (St (p)) with (−St (p)), which is sub-Bernoulli with range parameters g = 1 − p and
h = p and therefore sub-gamma with scale c = 2p − 1, we obtain

P(∃t ∈ N : St (p) ≤ −t ft (1 − p)) ≤ α/2. (43)

A union bound yields the two-sided result

P

(
∃t ∈ N : t−1St (p) � (− ft (1 − p), ft (p))

)
≤ α. (44)

• The sequence f̃t (p) is based on a two-sided beta-binomial mixture boundary drawn from Propo-
sition 7 of Howard et al. (2021). Below, we denote the beta function by B(a,b) =

∫ 1
0 ua−1(1 −

u)b−1 du. Fix any r > 0, a tuning parameter, and define

f̃t (p) �
1
t

sup
{

s ∈
[
0,

r + p(1 − p)t
p

)
: Mp,r (s,p(1 − p)t) < 1

α

}
, (45)
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where Mp,r (s,v) �
1

pv/(1−p)+s(1 − p)v/p−s
·

B
(
r+v
p − s, r+v1−p + s

)
B
(
r
p ,

r
1−p

) . (46)

Then we have

P

(
∃t ∈ N : t−1St (p) �

(
− f̃t (1 − p), f̃t (p)

) )
≤ 1 − α. (47)

By construction, F̂−
t (Q(p)) ≤ p + St (p)/t ≤ F̂t (Q−(p)) for all t, so with (44) we have

P

(
∃t ∈ N : F̂t (Q−(p)) ≤ p − ft (1 − p) or F̂−

t (Q(p)) ≥ p + ft (p)
)
≤ α. (48)

We now use the implications in (35) to conclude

P

(
∃t ∈ N : Q−(p) < Q̂t (p − ft (1 − p)) or Q(p) > Q̂−

t (p + ft (p))
)
≤ α, (49)

as desired. The same conclusion follows for f̃ by using (47) in place of (44).
We remark that (49) implies that the running intersection of confidence intervals also yields a valid

confidence sequence: for any q ∈ [Q−(p),Q(p)], we have

P

(
∀t ∈ N : q ∈

[
max
s≤t

Q̂s (p − fs(1 − p)) ,min
s≤t

Q̂−
s (p + fs(p))

] )
≥ 1 − α. (50)

This intersection yields smaller confidence intervals. However, on the miscoverage event of probability
α, or if the assumption of i.i.d. observations is violated, then the intersection method may lead to an
empty confidence interval. This can be viewed as a benefit, as an empty confidence interval is evidence
of problematic assumptions. In such cases, however, it may also lead to misleadingly small, but not
empty, confidence intervals, which may be harder to detect.

7.2. Proof of Theorem 2

We prove the following more general result:

Theorem 4. For any m ≥ 1, A > 1/
√

2, and C > 0, we have

P

(
∃t ≥ m :

���F̂t − F
���
∞
> A

√
log log(et/m) +C

t

)

≤ αA,C � inf
η∈(1,2A2),
γ(A,C ,η)>1

4e−γ
2(A,C ,η)C

(
1 +

1
(γ2(A,C,η) − 1) logη

)
, (51)

where γ(A,C,η)�
√

2/η
(
A−

√
2(η − 1)/C

)
. Furthermore,

P

(���F̂t − F
���
∞
> A

√
t−1(log log(et/m) +C) infinitely often

)
= 0. (52)
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To better understand the quantity αA,C , note that any value of η ∈ (1,2A2) satisfying γ(A,C,η) gives
an upper bound for αA,C . For fixed A, any value η ∈ (1,2A2) is feasible for sufficiently large C, while
for fixed C, any value η > 1 is feasible for sufficiently large A. In either case, γ2(A,C,η) ∼ 2A2/η as
A →∞ or C →∞, which yields logαA,C = O(−A2C), as may be expected from a typical exponential
concentration bound.

To obtain the special case stated in in Theorem 2, take A = 0.85 and any C ≥ 7, and observe that the
value η = 1.01 ensures that γ2(0.85,C,1.01) ≥ 1.25 and is thus feasible for the right-hand side of (51).

Our proof is based on inequality 13.2.1 of Shorack and Wellner (1986, p. 511) (cf. James, 1975).
We repeat the following special case; here (·)± denotes that we may take either the positive part of (·)
throughout, or the negative part throughout.

Lemma 1 (Shorack and Wellner, 1986, Inequality 13.2.1). Fix λ > 0, β ∈ (0,1), and η > 1 satisfying
(1 − β)2λ2 ≥ 2(η − 1). Then for all integers n′ ≤ n′′ having n′′/n′ ≤ η, we have

P

(
max

n′≤t≤n′′

���√t(F̂t − F)±
���
∞
> λ

)
≤ 2P

(���√n′′(F̂n′′ − F)±
���
∞
>
βλ
√
η

)
. (53)

Now fix any η ∈ (1,2A2) satisfying γ(A,C,η) > 1, and for k = 0,1, . . . , define the event

A±
k �

{
∃t ∈ [mηk,mηk+1) :

���(F̂t − F)±
���
∞
> A

√
log log(eηk) +C

t

}
. (54)

On the one hand, we have{
∃t ≥ m :

���F̂t − F
���
∞
>
gt

t

}
=

⋃
k∈Z≥0

{
∃t ∈ [mηk,mηk+1) :

���F̂t − F
���
∞
>
gt

t

}
(55)

⊆
⋃

k∈Z≥0

(
A+k ∪A−

k

)
. (56)

On the other hand, we will show that, for each k ≥ 0, the conditions of Lemma 1 are satisfied with
λ � A

√
log log(eηk) +C and β � 1 −

√
2(η − 1)/(A2C) = γ(A,C,η)

√
η/(2A2). It is clear that β ∈ (0,1)

since A, C, η, and γ(A,C,η) must all be positive. Also,

2(η − 1) = (1 − β)2 A2C ≤ (1 − β)2 A2(log log(eηk) +C) = (1 − β)2λ2, ∀k ≥ 0. (57)

Hence, for each k, Lemma 1 implies

P(A±
k ) ≤ 2P

(����√�ηk+1�(F̂�ηk+1 � − F)±
����
∞
>
βA

√
log log(eηk) +C

√
η

)
. (58)

Applying the one-sided DKW inequality (Massart, 1990, Theorem 1) then yields

P(A±
k ) ≤ 2 exp

{
−2c2 A2(log log(etk) +C)

η

}
=

2e−γ
2(A,C ,η)C

(1 + k logη)γ2(A,C ,η)
. (59)

Since γ(A,C,η) > 1, a union bound yields

P

(⋃
k∈N

(
A+k ∪A−

k

) )
≤ 4e−γ

2(A,C ,η)C
∞∑
k=0

1

(1 + k logη)γ2(A,C ,η)
(60)
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≤ 4e−γ
2(A,C ,η)C

(
1 +

1
(γ2(A,C,η) − 1) logη

)
, (61)

after bounding the sum by an integral. Combining (56) with (61), we conclude

P

(
∃t ≥ m :

���F̂t − F
���
∞
>
gt

t

)
≤ 4e−γ

2(A,C ,η)C
(
1 +

1
(γ2(A,C,η) − 1) logη

)
. (62)

Note Theorem 1 of Massart (1990) requires the tail probability bound in (59) to be less than 1/2. But if
this is not true, then our final tail probability will be at least one, so the result holds vacuously. Hence
the first part of the theorem is proved.

To obtain the final claim, (52), note that the calculations in (59) and (61), together with the first
Borel-Cantelli lemma, imply P(A+

k
or A−

k
infinitely often) = 0.

7.3. Proof of Theorem 3

Recall that the set of ε-optimal arms is denoted by

Aε �
{

k ∈ [K] : Q−
k (π + ε) ≥ max

j∈[K]
Q−

j (π − ε)
}
.

First, we prove that if QLUCB stops, it selects an ε-optimal arm with probability at least 1−δ. Choose
any k� ∈ arg maxk∈[K] Q−

k
(π − ε), an arm with optimal (π − ε)-quantile, and write q� � Q−

k�
(π − ε) for

the corresponding optimum quantile value. By our choice of un and ln to give one-sided coverage at
level δ/K , the proof of Theorem 1 and a union bound show that

P

(
∃t ∈ N and k � k� : Uπ−ε

k�,t < q� or Lπ+ε
k ,t > Q−

k (π + ε)
)
≤ δ. (63)

Suppose QLUCB stops at time T with some arm k ∈ Ac
ε , so that Q−

k
(π + ε) < q�. Then it must be true

that Lπ+ε
k ,T

≥ Uπ−ε
k�,T

, which implies that Lπ+ε
k ,T

> Q−
k
(π+ ε) or Uπ−ε

k�,T
< q� must hold. But (63) shows that

this can only occur on an event of probability at most δ. So with probability at least 1− δ, QLUCB can
only stop with an ε-optimal arm.

Next, we prove that QLUCB stops with probability one and obeys the sample complexity bound (28)
with probability at least 1 − 3δ. We first address the case when |Aε | > 1 so that Δk is given by (27) for
all k; we consider the case |Aε | = 1 at the end. Let

gn � 0.85

√
n−1

(
log log(en) + 0.8 log

(
1612K
δ

) )
, (64)

for n ∈ N . We choose this quantity to eventually control the deviations of Q̂k ,t (p) and Q̂−k, t(p) from
Q−
k
(p) and Qk(p) uniformly over k, t and p, via Corollary 2. For each k ∈ [K], define

τk � min {n ∈ N : gn + [un(π) ∨ ln(π + ε)] < Δk ∨ ε} . (65)

We will show that, once each arm has been sampled in Lt at least 2τk times, the confidence bounds are
sufficiently well-behaved to ensure that QLUCB must stop, on a “good” event with probability at least
1 − 3δ. This will imply that QLUCB stops after no more than 2

∑K
k=1 τk rounds on the “good” event,

and this sum has the desired rate.
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Define the “bad” event at time t, Bt = B1
t ∪ B2

t , where

B1
t �

{
∃k ∈ [K] : Uπ−ε

k ,t < Qk(π − ε) or Lπ+ε
k ,t > Q−

k (π + ε)
}
, and (66)

B2
t �

{
∃k ∈ [K],p ∈ (0,1) : Q̂k ,t (p) < Qk(p − gNk ,t

) or Q̂−
k ,t (p) > Q−

k (p + gNk ,t
)
}
. (67)

We exploit our previous results to bound the probability that Bt ever occurs:

Lemma 2. P
(
∪∞
t=1Bt

)
≤ 3δ.

Proof. First, by the definitions of Uπ−ε
k ,t

,Lπ+ε
k ,t

and our choices of un, ln, the proof of Theorem 1(a)
yields

P

( ∞⋃
t=1

B1
t

)
≤ 2δ. (68)

For B2
t , we invoke Corollary 2. Our choice of C = 0.8 log(1612K2/(δ(K − 1))) ensures that α0.85,C ≤

(K − 1)δ/K2, noting that K ≥ 2 implies C > 7 as required in (2). Hence, by a union bound,

P

( ∞⋃
t=1

B2
t

)
≤ δ. (69)

Combining (68) with (69) via a union bound, we have P(∪∞
t=1Bt ) ≤ 3δ as desired.

The following lemma verifies that an arm’s confidence bounds are well-behaved, in a specific sense,
once the arm has been sampled τj times and B2

t does not occur. We use the notation a+ � max(0,a).

Lemma 3. For any t ∈ N and j, k ∈ [K], on (B2
t )c , if Nk ,t ≥ τj , then

Uπ−ε
k ,t ≤ Q−

k (π + (Δj − ε)+), and (70)

Lπ+ε
k ,t ≥ Qk(π − (Δj − ε)+). (71)

Proof. From the definition of Uπ−ε
k ,t

,

Uπ−ε
k ,t = Q̂−

k ,t (π − ε + uNk ,t
(π − ε)) ≤ Q−

k (π − ε + uNk ,t
(π − ε) + gNk ,t

), (72)

since we are on (B2
t )c . Then since Nk ,t ≥ τj ,

Q−
k (π − ε + uNk ,t

(π − ε) + gNk ,t
) ≤ Q−

k (π − ε + (Δj ∨ ε))

=Q−
k (π + (Δj − ε)+). (73)

An analogous argument shows the second conclusion:

Lπ+ε
k ,t = Q̂k ,t (π + ε − lNk ,t

(π + ε)) ≥ Qk(π + ε − lNk ,t
(π + ε) − gNk ,t

) (74)

≥ Qk(π + ε − (Δj ∨ ε)) =Qk(π − (Δj − ε)+). (75)
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The next three lemmas will show that, once an arm in Lt has been sufficiently sampled, QLUCB
must stop. The easier case is when an arm’s gap is small, Δk < ε .

Lemma 4. For any t ∈ N and k ∈ [K] with Δk < ε , on (B2
t )c , if Nk ,t ≥ τk , then Lπ+ε

ht ,t
≥ Uπ−ε

k ,t
.

Proof. Our choice of ht ensures Lπ+ε
ht ,t

≥ Lπ+ε
k ,t

, while (70) and (71) show that

Lπ+ε
k ,t ≥ Qk(π) ≥ Q−

k (π) ≥ Uπ−ε
k ,t , (76)

as claimed.

To handle arms with Δk ≥ ε , we associate with each arm k an arm g(k) which satisfies Q−
k
(π+Δk) ≤

Qg(k)(π −Δk). Some such arm must exist by the definition of Δk and the fact that Q− is left-continuous
while Q is right-continuous. We first show that, when an arm k ∈ Lt with Δk ≥ ε has been sufficiently
sampled, we must also sample g(k):

Lemma 5. For any t ∈ N and k ∈ [K] with Δk ≥ ε , on Bc
t , if Nk ,t ≥ τk , then Uπ−ε

g(k),t ≥ Uπ−ε
k ,t

.

Proof. Bound (70) and our choice of g(k) ensure

Uπ−ε
k ,t ≤ Q−

k (π + Δk) ≤ Qg(k)(π − Δk). (77)

But Δk ≥ ε , so Qg(k)(π −Δk) ≤ Qg(k)(π − ε), and the latter is upper bounded by Uπ−ε
g(k),t since we are on

(B1
t )c .

Finally, we show that once arms k ∈ Lt and g(k) have both been sufficiently sampled, we must stop.

Lemma 6. Consider any t ∈ N and k ∈ [K] with Δk ≥ ε . On Bc
t , if Nk ,t ≥ τk and Ng(k),t ≥ τk , then

Lπ+ε
ht ,t

≥ Uπ−ε
k ,t

.

Proof. As in (77), we have

Uπ−ε
k ,t ≤ Qg(k)(π − Δk) ≤ Qg(k)(π − (Δk − ε)+). (78)

But since Ng(k),t ≥ τk , (71) and our choice of ht imply

Qg(k)(π − (Δk − ε)+) ≤ Lπ+ε
g(k),t ≤ Lπ+ε

ht ,t
. (79)

We combine the preceding lemmas in the following key result. Write Mk ,t =
∑t

s=1 1k∈Ls and note
that Nk ,t ≥ Mk ,t since we sample every arm in Lt at time t.

Lemma 7. For any t ∈ N, on Bc
t , if Mk ,t ≥ 2τk for any k ∈ Lt , then QLUCB must stop at time t.

Proof. If Δk < ε then the conclusion follows immediately from Lemma 4. If Δk ≥ ε , then Lemma 5
implies Ng(k),t ≥ Mk ,t − τk , since once Mk ,t ≥ τk , we must have Ug(k),t ≥ Uk ,t so that either g(k) = ht
or g(k) ∈ Lt whenever k ∈ Lt . Thus when Mk ,t ≥ 2τk , we must have Ng(k),t ≥ τk and the conclusion
follows from Lemma 6.
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We can now show that QLUCB stops after no more than 4
∑K

k=1 τk samples with probability at least
1 − 3δ. On Bc

t , Lemma 7 allows us to write

T ≤
∞∑
t=1

(1 + |Lt |)1{Mk ,t < 2τk for all k ∈ Lt } (80)

≤ 2
∞∑
t=1

K∑
k=1

1{k ∈ Lt and Mk ,t < 2τk } (81)

≤ 4
K∑
k=1

τk, (82)

by the definition of Mk ,t . Hence P(T ≤ 4
∑K

k=1 τk) ≥ 1−P(∪∞
t=1Bt ) ≥ 1−3δ using Lemma 2. It remains

to show that T <∞ a.s. and that
∑K

k=1 τk has the desired rate.
First, Corollary 1 of Howard et al. (2021) implies that P(B1

t infinitely often) = 0, while Theorem 2
implies P(B2

t infinitely often) = 0. So, with probability one, there exists t0 such that Bt occurs for no
t ≥ t0, and the above calculations show that T ≤ t0 + 4

∑K
k=1 τk . We conclude T <∞ almost surely.

Second, to show that
∑K

k=1 τk has the rate in (28), we use the following bound on the time for an
iterated-logarithm confidence sequence radius to shrink to a desired size, proved in supplement Section
1.2.

Lemma 8. Suppose (an(C))n∈N is a real-valued sequence for each C > 0 satisfying an =
O(
√

n−1(log log n +C)) as n,C ↑∞. Then

min {n ∈ N : an(C) ≤ x} = O
(

log log x−1 +C
x

)
as x ↓ 0,C ↑∞. (83)

Examining the form of un and ln given in (41) along with the definition of gn, we see that an(C) =
gn + [un(π) ∨ ln(π + ε)] satisfies the condition of Lemma 8 with C = log(K/δ), which implies

τk = O
(
(ε ∨ Δk)−2 log

(
K |log (ε ∨ Δk)|

δ

) )
. (84)

Summing over k yields the desired sample complexity (28), completing the proof.
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